Body size phenotypes comprehensively assess cardiometabolic risk and refine the association between obesity and gut microbiota
Objective: The gut microbiota associates with obesity and related disorders, but recent meta-analyses have found that this association is, at best, of small effect. We argue that such analyses are flawed by the use of body mass index (BMI) as sole proxy for disease, and explore a classification meth...
Gespeichert in:
Veröffentlicht in: | International Journal of Obesity 2018-03, Vol.42 (3), p.424-432 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Objective:
The gut microbiota associates with obesity and related disorders, but recent meta-analyses have found that this association is, at best, of small effect. We argue that such analyses are flawed by the use of body mass index (BMI) as sole proxy for disease, and explore a classification method that distinguishes the cardiometabolic health status of individuals to look for more comprehensive associations between gut microbes and health.
Design:
We analyzed a 441 community-dwelling cohort on which we obtained demographic and health information, anthropometry and blood biochemistry data that served to categorize participants according to BMI, cardiometabolic health status and body size phenotypes. In addition, the participants donated fecal samples from which we performed 16S rRNA gene sequencing to analyze the gut microbiota.
Results:
We observed that health-related variables deteriorate with increased BMI, and that there are further discrepancies within a given BMI category when distinguishing cardiometabolically healthy and unhealthy individuals. Regarding the gut microbiota, both obesity and cardiovascular disease associate with reductions in α-diversity; having lean, healthy individuals the most diverse microbiotas. Moreover, the association between the gut microbiota and health stems from particular consortia of microbes; the prevalence of consortia involving pathobionts and
Lachnospiraceae
are increased in obese and cardiometabolically abnormal subjects, whereas consortia including
Akkermansia muciniphila
and
Methanobrevibacter
,
Oscillospira
and
Dialister
have higher prevalence in cardiometabolically healthy and normoweight participants.
Conclusions:
The incorporation of cardiometabolic data allows a refined identification of dissimilarities in the gut microbiota; within a given BMI category, marker taxa associated with obesity and cardiometabolic disease are exacerbated in individuals with abnormal health status. Our results highlight the importance of the detailed assessment and classification of individuals that should be carried out prior to the evaluation of obesity treatments targeting the gut microbiota. |
---|---|
ISSN: | 0307-0565 1476-5497 |
DOI: | 10.1038/ijo.2017.281 |