Antimicrobial activity of malic acid against Listeria monocytogenes, Salmonella Enteritidis and Escherichia coli O157:H7 in apple, pear and melon juices

Minimal inhibitory (MIC) and minimal bactericidal (MBC) concentrations of malic acid against Listeria monocytogenes, Salmonella Enteritidis and Escherichia coli O157:H7 inoculated in apple, pear and melon juices stored at 5, 20 and 35 °C were evaluated. MICs and MBCs against L. monocytogenes, S. Ent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food control 2009-02, Vol.20 (2), p.105-112
Hauptverfasser: Raybaudi-Massilia, Rosa M., Mosqueda-Melgar, Jonathan, Martín-Belloso, Olga
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Minimal inhibitory (MIC) and minimal bactericidal (MBC) concentrations of malic acid against Listeria monocytogenes, Salmonella Enteritidis and Escherichia coli O157:H7 inoculated in apple, pear and melon juices stored at 5, 20 and 35 °C were evaluated. MICs and MBCs against L. monocytogenes, S. Enteritidis and E. coli O157:H7 were significantly affected by storage temperature, juice characteristics and type of microorganism. Malic acid was more effective at 35 and 20 °C than at 5 °C in all studied fruit juices. E. coli O157:H7 was more resistant to malic acid than S. Enteritidis and L. monocytogenes. Apple, pear and melon juices without malic acid were inhibitory to E. coli O157:H7, S. Enteritidis and L. monocytogenes at 5 °C, whereas, MBCs of 1.5% (v/v) of malic acid in apple and pear juices, and 2% (v/v) in melon juice at 5 °C were needed to reduce E. coli O157:H7, those concentrations being higher than those required to reduce S. Enteritidis and L. monocytogenes in those fruit juices. In addition, concentrations of 2%, 2.5% and 2.5% (v/v) of malic acid added to apple, pear and melon juices, respectively, were required to inactivate the three pathogens by more than 5 log cycles after 24 h of storage at 5 °C. Transmission electron microscopy showed that malic acid produced damage in the cell cytoplasm of pathogens without apparent changes in the cell membrane.
ISSN:0956-7135
1873-7129
DOI:10.1016/j.foodcont.2008.02.009