Optimal design of early warning systems for sovereign debt crises

This paper tackles the design of an optimal early warning system (EWS) for sovereign default from two distinct angles: the choice of the econometric methodology and the evaluation of the EWS itself. It compares K-means clustering of macrodata, a logit regression for macrodata, a logit regression for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of forecasting 2007-01, Vol.23 (1), p.85-100
Hauptverfasser: Fuertes, Ana-Maria, Kalotychou, Elena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 100
container_issue 1
container_start_page 85
container_title International journal of forecasting
container_volume 23
creator Fuertes, Ana-Maria
Kalotychou, Elena
description This paper tackles the design of an optimal early warning system (EWS) for sovereign default from two distinct angles: the choice of the econometric methodology and the evaluation of the EWS itself. It compares K-means clustering of macrodata, a logit regression for macrodata, a logit regression for credit ratings, and the combined forecasts from all three methods. The optimal choice of forecast method is shown to depend on the desired trade-off between missed defaults and false alarms. Hence, it is crucial to account for the decision-maker's preferences which are characterized through a loss function and risk-aversion parameter. Recursive forecast combining generally yields a better balance of type I and type II errors than any of the individual forecasting methods, and outperforms the naïve predictions.
doi_str_mv 10.1016/j.ijforecast.2006.07.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19647090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169207006000720</els_id><sourcerecordid>19647090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-3ea682541fdcb02e6aad1a07ac41c809df7a3d46c98e8b1db6a135aeb1aa84c93</originalsourceid><addsrcrecordid>eNqFkEtr3DAQx0Vpodu030Hk0JudkV-Sj2noIxDIpT2LsTROZby2I2m37LfvLFsa6KWHkYT4P4afEFJBqUB1N1MZpnGN5DDlsgLoStAlgHoldsroqjD891rsWNoXFWh4K96lNAFAq5XaidvHLYc9ztJTCk-LXEdJGOeT_IVxCcuTTKeUaZ8kd8i0HinSWeZpyNLFkCi9F29GnBN9-HNfiR9fPn-_-1Y8PH69v7t9KFwLTS5qws5UbaNG7waoqEP0CkGja5Qz0PtRY-2bzvWGzKD80KGqW6RBIZrG9fWV-HjJ3eL6fKCU7T4kR_OMC62HZFXfNRp6YOH1P8JpPcSFd7MMoNZVpTSLzEXk4ppSpNFukTnEk1Vgz2DtZF_A2jNYC9oyWLbeX6yRNnJ_fUQUlswOe7Q1VjUfp_MD2FZj4FE8G49puQHsz7znrE-XLGJyx0DRJhdoceQDN2fr1_D_hX4DkJegOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>207372217</pqid></control><display><type>article</type><title>Optimal design of early warning systems for sovereign debt crises</title><source>RePEc</source><source>Access via ScienceDirect (Elsevier)</source><creator>Fuertes, Ana-Maria ; Kalotychou, Elena</creator><creatorcontrib>Fuertes, Ana-Maria ; Kalotychou, Elena</creatorcontrib><description>This paper tackles the design of an optimal early warning system (EWS) for sovereign default from two distinct angles: the choice of the econometric methodology and the evaluation of the EWS itself. It compares K-means clustering of macrodata, a logit regression for macrodata, a logit regression for credit ratings, and the combined forecasts from all three methods. The optimal choice of forecast method is shown to depend on the desired trade-off between missed defaults and false alarms. Hence, it is crucial to account for the decision-maker's preferences which are characterized through a loss function and risk-aversion parameter. Recursive forecast combining generally yields a better balance of type I and type II errors than any of the individual forecasting methods, and outperforms the naïve predictions.</description><identifier>ISSN: 0169-2070</identifier><identifier>EISSN: 1872-8200</identifier><identifier>DOI: 10.1016/j.ijforecast.2006.07.001</identifier><identifier>CODEN: IJFOEK</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Clustering ; Country risk analysis ; Default prediction ; Emerging markets ; Forecast combining ; Forecasts ; Logit forecast ; Loss function ; Political risk ; Regression analysis ; Risk aversion ; Sovereign debt ; Studies</subject><ispartof>International journal of forecasting, 2007-01, Vol.23 (1), p.85-100</ispartof><rights>2006 International Institute of Forecasters</rights><rights>Copyright Elsevier Sequoia S.A. Jan-Mar 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-3ea682541fdcb02e6aad1a07ac41c809df7a3d46c98e8b1db6a135aeb1aa84c93</citedby><cites>FETCH-LOGICAL-c504t-3ea682541fdcb02e6aad1a07ac41c809df7a3d46c98e8b1db6a135aeb1aa84c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijforecast.2006.07.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4008,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeintfor/v_3a23_3ay_3a2007_3ai_3a1_3ap_3a85-100.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Fuertes, Ana-Maria</creatorcontrib><creatorcontrib>Kalotychou, Elena</creatorcontrib><title>Optimal design of early warning systems for sovereign debt crises</title><title>International journal of forecasting</title><description>This paper tackles the design of an optimal early warning system (EWS) for sovereign default from two distinct angles: the choice of the econometric methodology and the evaluation of the EWS itself. It compares K-means clustering of macrodata, a logit regression for macrodata, a logit regression for credit ratings, and the combined forecasts from all three methods. The optimal choice of forecast method is shown to depend on the desired trade-off between missed defaults and false alarms. Hence, it is crucial to account for the decision-maker's preferences which are characterized through a loss function and risk-aversion parameter. Recursive forecast combining generally yields a better balance of type I and type II errors than any of the individual forecasting methods, and outperforms the naïve predictions.</description><subject>Clustering</subject><subject>Country risk analysis</subject><subject>Default prediction</subject><subject>Emerging markets</subject><subject>Forecast combining</subject><subject>Forecasts</subject><subject>Logit forecast</subject><subject>Loss function</subject><subject>Political risk</subject><subject>Regression analysis</subject><subject>Risk aversion</subject><subject>Sovereign debt</subject><subject>Studies</subject><issn>0169-2070</issn><issn>1872-8200</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFkEtr3DAQx0Vpodu030Hk0JudkV-Sj2noIxDIpT2LsTROZby2I2m37LfvLFsa6KWHkYT4P4afEFJBqUB1N1MZpnGN5DDlsgLoStAlgHoldsroqjD891rsWNoXFWh4K96lNAFAq5XaidvHLYc9ztJTCk-LXEdJGOeT_IVxCcuTTKeUaZ8kd8i0HinSWeZpyNLFkCi9F29GnBN9-HNfiR9fPn-_-1Y8PH69v7t9KFwLTS5qws5UbaNG7waoqEP0CkGja5Qz0PtRY-2bzvWGzKD80KGqW6RBIZrG9fWV-HjJ3eL6fKCU7T4kR_OMC62HZFXfNRp6YOH1P8JpPcSFd7MMoNZVpTSLzEXk4ppSpNFukTnEk1Vgz2DtZF_A2jNYC9oyWLbeX6yRNnJ_fUQUlswOe7Q1VjUfp_MD2FZj4FE8G49puQHsz7znrE-XLGJyx0DRJhdoceQDN2fr1_D_hX4DkJegOQ</recordid><startdate>20070101</startdate><enddate>20070101</enddate><creator>Fuertes, Ana-Maria</creator><creator>Kalotychou, Elena</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U1</scope><scope>7U2</scope><scope>C1K</scope></search><sort><creationdate>20070101</creationdate><title>Optimal design of early warning systems for sovereign debt crises</title><author>Fuertes, Ana-Maria ; Kalotychou, Elena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-3ea682541fdcb02e6aad1a07ac41c809df7a3d46c98e8b1db6a135aeb1aa84c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Clustering</topic><topic>Country risk analysis</topic><topic>Default prediction</topic><topic>Emerging markets</topic><topic>Forecast combining</topic><topic>Forecasts</topic><topic>Logit forecast</topic><topic>Loss function</topic><topic>Political risk</topic><topic>Regression analysis</topic><topic>Risk aversion</topic><topic>Sovereign debt</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fuertes, Ana-Maria</creatorcontrib><creatorcontrib>Kalotychou, Elena</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>International journal of forecasting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fuertes, Ana-Maria</au><au>Kalotychou, Elena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal design of early warning systems for sovereign debt crises</atitle><jtitle>International journal of forecasting</jtitle><date>2007-01-01</date><risdate>2007</risdate><volume>23</volume><issue>1</issue><spage>85</spage><epage>100</epage><pages>85-100</pages><issn>0169-2070</issn><eissn>1872-8200</eissn><coden>IJFOEK</coden><abstract>This paper tackles the design of an optimal early warning system (EWS) for sovereign default from two distinct angles: the choice of the econometric methodology and the evaluation of the EWS itself. It compares K-means clustering of macrodata, a logit regression for macrodata, a logit regression for credit ratings, and the combined forecasts from all three methods. The optimal choice of forecast method is shown to depend on the desired trade-off between missed defaults and false alarms. Hence, it is crucial to account for the decision-maker's preferences which are characterized through a loss function and risk-aversion parameter. Recursive forecast combining generally yields a better balance of type I and type II errors than any of the individual forecasting methods, and outperforms the naïve predictions.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ijforecast.2006.07.001</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0169-2070
ispartof International journal of forecasting, 2007-01, Vol.23 (1), p.85-100
issn 0169-2070
1872-8200
language eng
recordid cdi_proquest_miscellaneous_19647090
source RePEc; Access via ScienceDirect (Elsevier)
subjects Clustering
Country risk analysis
Default prediction
Emerging markets
Forecast combining
Forecasts
Logit forecast
Loss function
Political risk
Regression analysis
Risk aversion
Sovereign debt
Studies
title Optimal design of early warning systems for sovereign debt crises
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A03%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20design%20of%20early%20warning%20systems%20for%20sovereign%20debt%20crises&rft.jtitle=International%20journal%20of%20forecasting&rft.au=Fuertes,%20Ana-Maria&rft.date=2007-01-01&rft.volume=23&rft.issue=1&rft.spage=85&rft.epage=100&rft.pages=85-100&rft.issn=0169-2070&rft.eissn=1872-8200&rft.coden=IJFOEK&rft_id=info:doi/10.1016/j.ijforecast.2006.07.001&rft_dat=%3Cproquest_cross%3E19647090%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=207372217&rft_id=info:pmid/&rft_els_id=S0169207006000720&rfr_iscdi=true