Optimal design of early warning systems for sovereign debt crises
This paper tackles the design of an optimal early warning system (EWS) for sovereign default from two distinct angles: the choice of the econometric methodology and the evaluation of the EWS itself. It compares K-means clustering of macrodata, a logit regression for macrodata, a logit regression for...
Gespeichert in:
Veröffentlicht in: | International journal of forecasting 2007-01, Vol.23 (1), p.85-100 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 100 |
---|---|
container_issue | 1 |
container_start_page | 85 |
container_title | International journal of forecasting |
container_volume | 23 |
creator | Fuertes, Ana-Maria Kalotychou, Elena |
description | This paper tackles the design of an optimal early warning system (EWS) for sovereign default from two distinct angles: the choice of the econometric methodology and the evaluation of the EWS itself. It compares K-means clustering of macrodata, a logit regression for macrodata, a logit regression for credit ratings, and the combined forecasts from all three methods. The optimal choice of forecast method is shown to depend on the desired trade-off between missed defaults and false alarms. Hence, it is crucial to account for the decision-maker's preferences which are characterized through a loss function and risk-aversion parameter. Recursive forecast combining generally yields a better balance of type I and type II errors than any of the individual forecasting methods, and outperforms the naïve predictions. |
doi_str_mv | 10.1016/j.ijforecast.2006.07.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19647090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169207006000720</els_id><sourcerecordid>19647090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-3ea682541fdcb02e6aad1a07ac41c809df7a3d46c98e8b1db6a135aeb1aa84c93</originalsourceid><addsrcrecordid>eNqFkEtr3DAQx0Vpodu030Hk0JudkV-Sj2noIxDIpT2LsTROZby2I2m37LfvLFsa6KWHkYT4P4afEFJBqUB1N1MZpnGN5DDlsgLoStAlgHoldsroqjD891rsWNoXFWh4K96lNAFAq5XaidvHLYc9ztJTCk-LXEdJGOeT_IVxCcuTTKeUaZ8kd8i0HinSWeZpyNLFkCi9F29GnBN9-HNfiR9fPn-_-1Y8PH69v7t9KFwLTS5qws5UbaNG7waoqEP0CkGja5Qz0PtRY-2bzvWGzKD80KGqW6RBIZrG9fWV-HjJ3eL6fKCU7T4kR_OMC62HZFXfNRp6YOH1P8JpPcSFd7MMoNZVpTSLzEXk4ppSpNFukTnEk1Vgz2DtZF_A2jNYC9oyWLbeX6yRNnJ_fUQUlswOe7Q1VjUfp_MD2FZj4FE8G49puQHsz7znrE-XLGJyx0DRJhdoceQDN2fr1_D_hX4DkJegOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>207372217</pqid></control><display><type>article</type><title>Optimal design of early warning systems for sovereign debt crises</title><source>RePEc</source><source>Access via ScienceDirect (Elsevier)</source><creator>Fuertes, Ana-Maria ; Kalotychou, Elena</creator><creatorcontrib>Fuertes, Ana-Maria ; Kalotychou, Elena</creatorcontrib><description>This paper tackles the design of an optimal early warning system (EWS) for sovereign default from two distinct angles: the choice of the econometric methodology and the evaluation of the EWS itself. It compares K-means clustering of macrodata, a logit regression for macrodata, a logit regression for credit ratings, and the combined forecasts from all three methods. The optimal choice of forecast method is shown to depend on the desired trade-off between missed defaults and false alarms. Hence, it is crucial to account for the decision-maker's preferences which are characterized through a loss function and risk-aversion parameter. Recursive forecast combining generally yields a better balance of type I and type II errors than any of the individual forecasting methods, and outperforms the naïve predictions.</description><identifier>ISSN: 0169-2070</identifier><identifier>EISSN: 1872-8200</identifier><identifier>DOI: 10.1016/j.ijforecast.2006.07.001</identifier><identifier>CODEN: IJFOEK</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Clustering ; Country risk analysis ; Default prediction ; Emerging markets ; Forecast combining ; Forecasts ; Logit forecast ; Loss function ; Political risk ; Regression analysis ; Risk aversion ; Sovereign debt ; Studies</subject><ispartof>International journal of forecasting, 2007-01, Vol.23 (1), p.85-100</ispartof><rights>2006 International Institute of Forecasters</rights><rights>Copyright Elsevier Sequoia S.A. Jan-Mar 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-3ea682541fdcb02e6aad1a07ac41c809df7a3d46c98e8b1db6a135aeb1aa84c93</citedby><cites>FETCH-LOGICAL-c504t-3ea682541fdcb02e6aad1a07ac41c809df7a3d46c98e8b1db6a135aeb1aa84c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijforecast.2006.07.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4008,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeintfor/v_3a23_3ay_3a2007_3ai_3a1_3ap_3a85-100.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Fuertes, Ana-Maria</creatorcontrib><creatorcontrib>Kalotychou, Elena</creatorcontrib><title>Optimal design of early warning systems for sovereign debt crises</title><title>International journal of forecasting</title><description>This paper tackles the design of an optimal early warning system (EWS) for sovereign default from two distinct angles: the choice of the econometric methodology and the evaluation of the EWS itself. It compares K-means clustering of macrodata, a logit regression for macrodata, a logit regression for credit ratings, and the combined forecasts from all three methods. The optimal choice of forecast method is shown to depend on the desired trade-off between missed defaults and false alarms. Hence, it is crucial to account for the decision-maker's preferences which are characterized through a loss function and risk-aversion parameter. Recursive forecast combining generally yields a better balance of type I and type II errors than any of the individual forecasting methods, and outperforms the naïve predictions.</description><subject>Clustering</subject><subject>Country risk analysis</subject><subject>Default prediction</subject><subject>Emerging markets</subject><subject>Forecast combining</subject><subject>Forecasts</subject><subject>Logit forecast</subject><subject>Loss function</subject><subject>Political risk</subject><subject>Regression analysis</subject><subject>Risk aversion</subject><subject>Sovereign debt</subject><subject>Studies</subject><issn>0169-2070</issn><issn>1872-8200</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFkEtr3DAQx0Vpodu030Hk0JudkV-Sj2noIxDIpT2LsTROZby2I2m37LfvLFsa6KWHkYT4P4afEFJBqUB1N1MZpnGN5DDlsgLoStAlgHoldsroqjD891rsWNoXFWh4K96lNAFAq5XaidvHLYc9ztJTCk-LXEdJGOeT_IVxCcuTTKeUaZ8kd8i0HinSWeZpyNLFkCi9F29GnBN9-HNfiR9fPn-_-1Y8PH69v7t9KFwLTS5qws5UbaNG7waoqEP0CkGja5Qz0PtRY-2bzvWGzKD80KGqW6RBIZrG9fWV-HjJ3eL6fKCU7T4kR_OMC62HZFXfNRp6YOH1P8JpPcSFd7MMoNZVpTSLzEXk4ppSpNFukTnEk1Vgz2DtZF_A2jNYC9oyWLbeX6yRNnJ_fUQUlswOe7Q1VjUfp_MD2FZj4FE8G49puQHsz7znrE-XLGJyx0DRJhdoceQDN2fr1_D_hX4DkJegOQ</recordid><startdate>20070101</startdate><enddate>20070101</enddate><creator>Fuertes, Ana-Maria</creator><creator>Kalotychou, Elena</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U1</scope><scope>7U2</scope><scope>C1K</scope></search><sort><creationdate>20070101</creationdate><title>Optimal design of early warning systems for sovereign debt crises</title><author>Fuertes, Ana-Maria ; Kalotychou, Elena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-3ea682541fdcb02e6aad1a07ac41c809df7a3d46c98e8b1db6a135aeb1aa84c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Clustering</topic><topic>Country risk analysis</topic><topic>Default prediction</topic><topic>Emerging markets</topic><topic>Forecast combining</topic><topic>Forecasts</topic><topic>Logit forecast</topic><topic>Loss function</topic><topic>Political risk</topic><topic>Regression analysis</topic><topic>Risk aversion</topic><topic>Sovereign debt</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fuertes, Ana-Maria</creatorcontrib><creatorcontrib>Kalotychou, Elena</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>International journal of forecasting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fuertes, Ana-Maria</au><au>Kalotychou, Elena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal design of early warning systems for sovereign debt crises</atitle><jtitle>International journal of forecasting</jtitle><date>2007-01-01</date><risdate>2007</risdate><volume>23</volume><issue>1</issue><spage>85</spage><epage>100</epage><pages>85-100</pages><issn>0169-2070</issn><eissn>1872-8200</eissn><coden>IJFOEK</coden><abstract>This paper tackles the design of an optimal early warning system (EWS) for sovereign default from two distinct angles: the choice of the econometric methodology and the evaluation of the EWS itself. It compares K-means clustering of macrodata, a logit regression for macrodata, a logit regression for credit ratings, and the combined forecasts from all three methods. The optimal choice of forecast method is shown to depend on the desired trade-off between missed defaults and false alarms. Hence, it is crucial to account for the decision-maker's preferences which are characterized through a loss function and risk-aversion parameter. Recursive forecast combining generally yields a better balance of type I and type II errors than any of the individual forecasting methods, and outperforms the naïve predictions.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ijforecast.2006.07.001</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-2070 |
ispartof | International journal of forecasting, 2007-01, Vol.23 (1), p.85-100 |
issn | 0169-2070 1872-8200 |
language | eng |
recordid | cdi_proquest_miscellaneous_19647090 |
source | RePEc; Access via ScienceDirect (Elsevier) |
subjects | Clustering Country risk analysis Default prediction Emerging markets Forecast combining Forecasts Logit forecast Loss function Political risk Regression analysis Risk aversion Sovereign debt Studies |
title | Optimal design of early warning systems for sovereign debt crises |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A03%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20design%20of%20early%20warning%20systems%20for%20sovereign%20debt%20crises&rft.jtitle=International%20journal%20of%20forecasting&rft.au=Fuertes,%20Ana-Maria&rft.date=2007-01-01&rft.volume=23&rft.issue=1&rft.spage=85&rft.epage=100&rft.pages=85-100&rft.issn=0169-2070&rft.eissn=1872-8200&rft.coden=IJFOEK&rft_id=info:doi/10.1016/j.ijforecast.2006.07.001&rft_dat=%3Cproquest_cross%3E19647090%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=207372217&rft_id=info:pmid/&rft_els_id=S0169207006000720&rfr_iscdi=true |