Optimal design of early warning systems for sovereign debt crises

This paper tackles the design of an optimal early warning system (EWS) for sovereign default from two distinct angles: the choice of the econometric methodology and the evaluation of the EWS itself. It compares K-means clustering of macrodata, a logit regression for macrodata, a logit regression for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of forecasting 2007-01, Vol.23 (1), p.85-100
Hauptverfasser: Fuertes, Ana-Maria, Kalotychou, Elena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper tackles the design of an optimal early warning system (EWS) for sovereign default from two distinct angles: the choice of the econometric methodology and the evaluation of the EWS itself. It compares K-means clustering of macrodata, a logit regression for macrodata, a logit regression for credit ratings, and the combined forecasts from all three methods. The optimal choice of forecast method is shown to depend on the desired trade-off between missed defaults and false alarms. Hence, it is crucial to account for the decision-maker's preferences which are characterized through a loss function and risk-aversion parameter. Recursive forecast combining generally yields a better balance of type I and type II errors than any of the individual forecasting methods, and outperforms the naïve predictions.
ISSN:0169-2070
1872-8200
DOI:10.1016/j.ijforecast.2006.07.001