Optimal design of early warning systems for sovereign debt crises
This paper tackles the design of an optimal early warning system (EWS) for sovereign default from two distinct angles: the choice of the econometric methodology and the evaluation of the EWS itself. It compares K-means clustering of macrodata, a logit regression for macrodata, a logit regression for...
Gespeichert in:
Veröffentlicht in: | International journal of forecasting 2007-01, Vol.23 (1), p.85-100 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper tackles the design of an optimal early warning system (EWS) for sovereign default from two distinct angles: the choice of the econometric methodology and the evaluation of the EWS itself. It compares K-means clustering of macrodata, a logit regression for macrodata, a logit regression for credit ratings, and the combined forecasts from all three methods. The optimal choice of forecast method is shown to depend on the desired trade-off between missed defaults and false alarms. Hence, it is crucial to account for the decision-maker's preferences which are characterized through a loss function and risk-aversion parameter. Recursive forecast combining generally yields a better balance of type I and type II errors than any of the individual forecasting methods, and outperforms the naïve predictions. |
---|---|
ISSN: | 0169-2070 1872-8200 |
DOI: | 10.1016/j.ijforecast.2006.07.001 |