Multiconfiguration Pair-Density Functional Theory and Complete Active Space Second Order Perturbation Theory. Bond Dissociation Energies of FeC, NiC, FeS, NiS, FeSe, and NiSe
We investigate the performance of multiconfiguration pair-density functional theory (MC-PDFT) and complete active space second-order perturbation theory for computing the bond dissociation energies of the diatomic molecules FeC, NiC, FeS, NiS, FeSe, and NiSe, for which accurate experimental data hav...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2017-12, Vol.121 (48), p.9392-9400 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate the performance of multiconfiguration pair-density functional theory (MC-PDFT) and complete active space second-order perturbation theory for computing the bond dissociation energies of the diatomic molecules FeC, NiC, FeS, NiS, FeSe, and NiSe, for which accurate experimental data have become recently available [Matthew, D. J.; Tieu, E.; Morse, M. D. J. Chem. Phys. 2017, 146, 144310–144320]. We use three correlated participating orbital (CPO) schemes (nominal, moderate, and extended) to define the active spaces, and we consider both the complete active space (CAS) and the separated-pair (SP) schemes to specify the configurations included for a given active space. We found that the moderate SP-PDFT scheme with the tPBE on-top density functional has the smallest mean unsigned error (MUE) of the methods considered. This level of theory provides a balanced treatment of the static and dynamic correlation energies for the studied systems. This is encouraging because the method is low in cost even for much more complicated systems. |
---|---|
ISSN: | 1089-5639 1520-5215 |
DOI: | 10.1021/acs.jpca.7b09779 |