Micellar Thrombin-Binding Aptamers: Reversible Nanoscale Anticoagulants

Aptamers are nucleic acid-based ligands that exhibit promising features including specific and reversible target binding and inhibition. Aptamers can function as anticoagulants if they are directed against enzymes of the coagulation cascade. However, they typically suffer from nucleolytic digestion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2017-11, Vol.139 (46), p.16442-16445
Hauptverfasser: Roloff, Alexander, Carlini, Andrea S, Callmann, Cassandra E, Gianneschi, Nathan C
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aptamers are nucleic acid-based ligands that exhibit promising features including specific and reversible target binding and inhibition. Aptamers can function as anticoagulants if they are directed against enzymes of the coagulation cascade. However, they typically suffer from nucleolytic digestion and fast clearance from the bloodstream. We present thrombin-binding aptamer amphiphiles that self-assemble into nanoscale polymeric micelles with a densely functionalized aptamer-displaying corona. We show that these micellar aptamers retain their native secondary structure in a crowded environment and are stabilized against degradation by nucleases in human serum. Moreover, they are effective inhibitors of human plasma clotting in vitro. The inhibitory effect can be rapidly reversed by complementary nucleic acids that break the aptamers’ secondary structure upon hybridization. Compared to free aptamers, the increased molecular weight and size of the overall assembly promotes extended blood circulation times in vivo.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.7b07799