Environmental impact on construction limestone at humid regions with an emphasis on salt weathering, Al-hambra islamic archaeological site, Granada City, Spain: case study

Al-hambra is an immense and valuable archaeological site in Spain built on Sabika hill with red brick and natural sandy limestone. It exhibits weathering features indicating salt weathering process. The main aim of this study is to examine weathering processes and intensity acting on Al-hambra. Rock...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental earth sciences 2007-08, Vol.52 (8), p.1539-1547
1. Verfasser: Kamh, G. M. E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Al-hambra is an immense and valuable archaeological site in Spain built on Sabika hill with red brick and natural sandy limestone. It exhibits weathering features indicating salt weathering process. The main aim of this study is to examine weathering processes and intensity acting on Al-hambra. Rock petrography and mineralogical composition have been examined using thin sections, scanning electron microscope, X-ray diffraction and X-ray fluorescence; limits of rock's physical parameters using ultrasonic waves and mercury porosimeter; rock salt content through hydrochemical analysis. Salts attacking this structure are mainly from wet deposition of air pollutants on the long term chemical alteration of rock's carbonate content to its equivalent salts. The salts' concentration limit within the examined rock samples is considerably low but it is effective on the long run through hydration of sulphate salts and/or crystallization of chloride salts. Rock texture type and its silica as well as clay content reduces its resistance to internal stresses by salts as well as wetting and drying cycles at such humid area. The recession in limits of physical parameters examined for deep seated and weathered limestone samples quantitatively reflects weathering intensity on Al-hambra.
ISSN:0943-0105
1866-6280
1432-0495
1866-6299
DOI:10.1007/s00254-006-0598-1