Protecting Health
Water‐soluble heavy metal salts injure health when they leach into water supplies. It is important that students who may later be employed in industries generating aqueous solutions of such salts are aware of the methods that can be used to recover the metal salt or transform it to non‐health threat...
Gespeichert in:
Veröffentlicht in: | Annals of the New York Academy of Sciences 2008-10, Vol.1140 (1), p.425-430 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Water‐soluble heavy metal salts injure health when they leach into water supplies. It is important that students who may later be employed in industries generating aqueous solutions of such salts are aware of the methods that can be used to recover the metal salt or transform it to non‐health threatening products. The research was in the management of small quantities of hazardous wastes, such as are generated in school, college, and university teaching laboratories; in research laboratories; in industrial quality control and testing laboratories; and in small industries. Methods for the recovery of silver, nickel, and cobalt salts from relatively small volumes of aqueous solutions of their soluble salts were developed and tested. Where it was not practical to recover the metal salt, the practice has been to convert it to a water‐insoluble salt, often the sulfide. This requires the use of highly toxic reagents. It was found that a number of heavy metal salts can be precipitated as the silicates, returning them to the form in which they are found in the natural ore. These salts show similar solubility properties to the sulfides in neutral, acidic, and basic aqueous solutions. The work has determined the conditions, quantities, and solution acidity that result in the most effective precipitation of the heavy metal salt. The concentration of the metal ions remaining in solution was measured by AA and ICP spectrometry. Specific methods have been developed for the conversion of salts of mercury and chromium to nonsoluble products. |
---|---|
ISSN: | 0077-8923 1749-6632 1930-6547 |
DOI: | 10.1196/annals.1454.040 |