Field study on indoor thermal environment in an atrium in tropical climates

Solar penetration through the transparent envelope can severely deteriorate indoor thermal environment inside an atrium building particularly in tropical climates. This paper reports the application of two low-cost measures, namely high level internal solar blinds and water spray, to minimise overhe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Building and environment 2009-02, Vol.44 (2), p.431-436
Hauptverfasser: Abdullah, Abd.Halid, Meng, Qinglin, Zhao, Lihua, Wang, Fan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Solar penetration through the transparent envelope can severely deteriorate indoor thermal environment inside an atrium building particularly in tropical climates. This paper reports the application of two low-cost measures, namely high level internal solar blinds and water spray, to minimise overheating problems on the three levels inside the atrium of a guesthouse in Southern China, where summer is hot and humid. The blinds reduce direct solar penetration at the top of the atrium whilst the evaporative spray system cools down the glazed surfaces of the atrium envelope. A site test was undertaken over 10 consecutive days covering both overcast days and clear days in July 2004. Measurement of indoor thermal environmental parameters was conducted on three levels in the atrium and the recorded data represent the internal conditions: with and without internal blinds protection from solar, and with and without water spray. This study has shown that on hot and clear summer days, with water spray and without blinds the average air temperature difference from 1200 to 1800 h between both first floor and second floor, and second floor and external were 5.7 and 1.7 K, respectively; whilst with blinds and without water spray the average air temperature differences were 8.7 and 4.8 K, respectively.
ISSN:0360-1323
1873-684X
DOI:10.1016/j.buildenv.2008.02.011