Genome-wide association study for ketosis in US Jerseys using producer-recorded data

Ketosis is one of the most frequently reported metabolic health events in dairy herds. Several genetic analyses of ketosis in dairy cattle have been conducted; however, few have focused specifically on Jersey cattle. The objectives of this research included estimating variance components for suscept...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dairy science 2018-01, Vol.101 (1), p.413-424
Hauptverfasser: Parker Gaddis, K.L., Megonigal, J.H., Clay, J.S., Wolfe, C.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ketosis is one of the most frequently reported metabolic health events in dairy herds. Several genetic analyses of ketosis in dairy cattle have been conducted; however, few have focused specifically on Jersey cattle. The objectives of this research included estimating variance components for susceptibility to ketosis and identification of genomic regions associated with ketosis in Jersey cattle. Voluntary producer-recorded health event data related to ketosis were available from Dairy Records Management Systems (Raleigh, NC). Standardization was implemented to account for the various acronyms used by producers to designate an incidence of ketosis. Events were restricted to the first reported incidence within 60 d after calving in first through fifth parities. After editing, there were a total of 42,233 records from 23,865 cows. A total of 1,750 genotyped animals were used for genomic analyses using 60,671 markers. Because of the binary nature of the trait, a threshold animal model was fitted using THRGIBBS1F90 (version 2.110) using only pedigree information, and genomic information was incorporated using a single-step genomic BLUP approach. Individual single nucleotide polymorphism (SNP) effects and the proportion of variance explained by 10-SNP windows were calculated using postGSf90 (version 1.38). Heritability of susceptibility to ketosis was 0.083 [standard deviation (SD) = 0.021] and 0.078 (SD = 0.018) in pedigree-based and genomic analyses, respectively. The marker with the largest associated effect was located on chromosome 10 at 66.3 Mbp. The 10-SNP window explaining the largest proportion of variance (0.70%) was located on chromosome 6 beginning at 56.1 Mbp. Gene Ontology (GO) and Medical Subject Heading (MeSH) enrichment analyses identified several overrepresented processes and terms related to immune function. Our results indicate that there is a genetic component related to ketosis susceptibility in Jersey cattle and, as such, genetic selection for improved resistance to ketosis is feasible.
ISSN:0022-0302
1525-3198
DOI:10.3168/jds.2017-13383