Maternal methyl donor supplementation during gestation counteracts bisphenol A-induced oxidative stress in sows and offspring

Abstract Objective Maternal oxidative stress is harmful for embryonic, fetal and placental development. This experiment was conducted to investigate whether methyl donor supplementation during gestation effectively ameliorates maternal and placenta oxidative stress up to offspring. Methods Fifty-six...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nutrition (Burbank, Los Angeles County, Calif.) Los Angeles County, Calif.), 2018-01, Vol.45, p.76-84
Hauptverfasser: Mou, Daolin, M.D, Wang, Jun, Ph.D, Liu, Hong, M.D, Chen, Yuling, M.D, Che, Lianqiang, Ph.D, Fang, Zhengfeng, Ph.D, Xu, Shengyu, Ph.D, Lin, Yan, Ph.D, Feng, Bin, Ph.D, Li, Jian, Ph.D, Wu, De, Ph.D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 84
container_issue
container_start_page 76
container_title Nutrition (Burbank, Los Angeles County, Calif.)
container_volume 45
creator Mou, Daolin, M.D
Wang, Jun, Ph.D
Liu, Hong, M.D
Chen, Yuling, M.D
Che, Lianqiang, Ph.D
Fang, Zhengfeng, Ph.D
Xu, Shengyu, Ph.D
Lin, Yan, Ph.D
Feng, Bin, Ph.D
Li, Jian, Ph.D
Wu, De, Ph.D
description Abstract Objective Maternal oxidative stress is harmful for embryonic, fetal and placental development. This experiment was conducted to investigate whether methyl donor supplementation during gestation effectively ameliorates maternal and placenta oxidative stress up to offspring. Methods Fifty-six Landrace × Yorkshire sows were randomly allocated to receive one of the following four diets during gestation: control diet (CON); control diet supplemented with methyl donor (MET); control diet supplemented with bisphenol-A (BPA); and control diet supplemented with BPA and MET (BPA + MET). Blood sample, chorioallantois and piglets liver samples were analyzed for antioxidant status and mRNA expression of genes in regard to oxidative status. Results MET diets lowered homocysteine concentration in sows plasma, improved activity of antioxidant enzymes in chorioallantois and piglets plasma, liver (catalase, glutathione peroxidase and total antioxidant capacity, p < 0.01), as also upregulated mRNA expression of Cu,Zn superoxide dismutase (p < 0.01) and glutathione peroxidase 1 (p < 0.05) in the chorioallantois and CAT (p < 0.01) in piglets liver compared with control group. In contrast, BPA diets increased malondialdehyde (p < 0.01) level in sows and piglets and decreased T-AOC (p < 0.01) concentration in sows and umbilical cord blood plasma, as also down-regulated Cu,Zn-SOD (p = 0.01) in piglets liver compared with MET group. Conclusion BPA diets fed to sows during gestation aggravated oxidative stress status in sows and piglets, while the methyl donor diets enhanced antioxidant capacity of sows and piglets and ameliorated oxidative stress induced by BPA.
doi_str_mv 10.1016/j.nut.2017.03.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1963473294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0899900717300771</els_id><sourcerecordid>1963473294</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-6aa64fa7f36996b9d21335a68835be0641dded3024cde530968de458d50299c23</originalsourceid><addsrcrecordid>eNp9kk-L1TAUxYMoznP0A7iRgJvZtOZf0wZBGAZHhREX6jrkJbczebZJTdrRt5jvbup7KszCTQLJ7xy451yEnlNSU0Llq10dlrlmhLY14TWh7AHa0K7lFWVCPEQb0ilVKULaE_Qk5x0hhCqpHqMTpihTTJANuvtoZkjBDHiE-WY_YBdDTDgv0zTACGE2s48BuyX5cI2vIR8fbFxCERo7Z7z1ebqBEAd8XvngFgsOx5_eFfIWcJ4T5Ix9wDn-yNiE8tn3eVoNn6JHvRkyPDvep-jr5dsvF--rq0_vPlycX1VWcDlX0hgpetP2XColt8oxynljZNfxZgtECuocOE6YsA4aTpTsHIimcw1hSlnGT9HZwXdK8ftShtCjzxaGwQSIS9YlFi5azpQo6Mt76C4ua0C_qUaIlsmVogfKpphzgl6XeUaT9poSvXajd7p0o9duNOG6dFM0L47Oy3YE91fxp4wCvD4AUKK49ZB0th5CidMnsLN20f_X_s09tR188NYM32AP-d8UOjNN9Od1OdbdoC0vZ0v5L1mhtgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1965447264</pqid></control><display><type>article</type><title>Maternal methyl donor supplementation during gestation counteracts bisphenol A-induced oxidative stress in sows and offspring</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><source>ProQuest Central UK/Ireland</source><creator>Mou, Daolin, M.D ; Wang, Jun, Ph.D ; Liu, Hong, M.D ; Chen, Yuling, M.D ; Che, Lianqiang, Ph.D ; Fang, Zhengfeng, Ph.D ; Xu, Shengyu, Ph.D ; Lin, Yan, Ph.D ; Feng, Bin, Ph.D ; Li, Jian, Ph.D ; Wu, De, Ph.D</creator><creatorcontrib>Mou, Daolin, M.D ; Wang, Jun, Ph.D ; Liu, Hong, M.D ; Chen, Yuling, M.D ; Che, Lianqiang, Ph.D ; Fang, Zhengfeng, Ph.D ; Xu, Shengyu, Ph.D ; Lin, Yan, Ph.D ; Feng, Bin, Ph.D ; Li, Jian, Ph.D ; Wu, De, Ph.D</creatorcontrib><description><![CDATA[Abstract Objective Maternal oxidative stress is harmful for embryonic, fetal and placental development. This experiment was conducted to investigate whether methyl donor supplementation during gestation effectively ameliorates maternal and placenta oxidative stress up to offspring. Methods Fifty-six Landrace × Yorkshire sows were randomly allocated to receive one of the following four diets during gestation: control diet (CON); control diet supplemented with methyl donor (MET); control diet supplemented with bisphenol-A (BPA); and control diet supplemented with BPA and MET (BPA + MET). Blood sample, chorioallantois and piglets liver samples were analyzed for antioxidant status and mRNA expression of genes in regard to oxidative status. Results MET diets lowered homocysteine concentration in sows plasma, improved activity of antioxidant enzymes in chorioallantois and piglets plasma, liver (catalase, glutathione peroxidase and total antioxidant capacity, p < 0.01), as also upregulated mRNA expression of Cu,Zn superoxide dismutase (p < 0.01) and glutathione peroxidase 1 (p < 0.05) in the chorioallantois and CAT (p < 0.01) in piglets liver compared with control group. In contrast, BPA diets increased malondialdehyde (p < 0.01) level in sows and piglets and decreased T-AOC (p < 0.01) concentration in sows and umbilical cord blood plasma, as also down-regulated Cu,Zn-SOD (p = 0.01) in piglets liver compared with MET group. Conclusion BPA diets fed to sows during gestation aggravated oxidative stress status in sows and piglets, while the methyl donor diets enhanced antioxidant capacity of sows and piglets and ameliorated oxidative stress induced by BPA.]]></description><identifier>ISSN: 0899-9007</identifier><identifier>EISSN: 1873-1244</identifier><identifier>DOI: 10.1016/j.nut.2017.03.012</identifier><identifier>PMID: 29129240</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Actins - genetics ; Actins - metabolism ; Amino acids ; Animal Feed ; Animal Nutritional Physiological Phenomena ; Animals ; Antioxidant capacity ; Antioxidants ; Benzhydryl Compounds - toxicity ; Betaine - administration &amp; dosage ; Bisphenol A ; Blood plasma ; Catalase ; Catalase - blood ; Catalase - genetics ; Choline - administration &amp; dosage ; Copper ; Cord blood ; Diet ; Diet - veterinary ; Dietary Supplements ; DNA methylation ; Embryogenesis ; Embryos ; Female ; Fetuses ; Folic Acid - administration &amp; dosage ; Gastroenterology and Hepatology ; Gene expression ; Gestation ; Glutathione ; Glutathione peroxidase ; Glutathione Peroxidase - blood ; Glutathione Peroxidase - genetics ; Hogs ; Homocysteine ; Homocysteine - analogs &amp; derivatives ; Homocysteine - blood ; Liver ; Malondialdehyde ; Malondialdehyde - blood ; Maternal Nutritional Physiological Phenomena ; Metabolism ; Methyl donor ; Offspring ; Oxidative stress ; Oxidative Stress - drug effects ; Peroxidase ; Phenols - toxicity ; Placenta ; Placenta - chemistry ; Pregnancy ; Rodents ; Sulfur ; Superoxide dismutase ; Superoxide Dismutase - blood ; Superoxide Dismutase - genetics ; Swine ; Umbilical cord ; Vitamin B 12 - administration &amp; dosage ; Zinc</subject><ispartof>Nutrition (Burbank, Los Angeles County, Calif.), 2018-01, Vol.45, p.76-84</ispartof><rights>2017</rights><rights>Copyright © 2017. Published by Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Jan 1, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-6aa64fa7f36996b9d21335a68835be0641dded3024cde530968de458d50299c23</citedby><cites>FETCH-LOGICAL-c436t-6aa64fa7f36996b9d21335a68835be0641dded3024cde530968de458d50299c23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1965447264?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29129240$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mou, Daolin, M.D</creatorcontrib><creatorcontrib>Wang, Jun, Ph.D</creatorcontrib><creatorcontrib>Liu, Hong, M.D</creatorcontrib><creatorcontrib>Chen, Yuling, M.D</creatorcontrib><creatorcontrib>Che, Lianqiang, Ph.D</creatorcontrib><creatorcontrib>Fang, Zhengfeng, Ph.D</creatorcontrib><creatorcontrib>Xu, Shengyu, Ph.D</creatorcontrib><creatorcontrib>Lin, Yan, Ph.D</creatorcontrib><creatorcontrib>Feng, Bin, Ph.D</creatorcontrib><creatorcontrib>Li, Jian, Ph.D</creatorcontrib><creatorcontrib>Wu, De, Ph.D</creatorcontrib><title>Maternal methyl donor supplementation during gestation counteracts bisphenol A-induced oxidative stress in sows and offspring</title><title>Nutrition (Burbank, Los Angeles County, Calif.)</title><addtitle>Nutrition</addtitle><description><![CDATA[Abstract Objective Maternal oxidative stress is harmful for embryonic, fetal and placental development. This experiment was conducted to investigate whether methyl donor supplementation during gestation effectively ameliorates maternal and placenta oxidative stress up to offspring. Methods Fifty-six Landrace × Yorkshire sows were randomly allocated to receive one of the following four diets during gestation: control diet (CON); control diet supplemented with methyl donor (MET); control diet supplemented with bisphenol-A (BPA); and control diet supplemented with BPA and MET (BPA + MET). Blood sample, chorioallantois and piglets liver samples were analyzed for antioxidant status and mRNA expression of genes in regard to oxidative status. Results MET diets lowered homocysteine concentration in sows plasma, improved activity of antioxidant enzymes in chorioallantois and piglets plasma, liver (catalase, glutathione peroxidase and total antioxidant capacity, p < 0.01), as also upregulated mRNA expression of Cu,Zn superoxide dismutase (p < 0.01) and glutathione peroxidase 1 (p < 0.05) in the chorioallantois and CAT (p < 0.01) in piglets liver compared with control group. In contrast, BPA diets increased malondialdehyde (p < 0.01) level in sows and piglets and decreased T-AOC (p < 0.01) concentration in sows and umbilical cord blood plasma, as also down-regulated Cu,Zn-SOD (p = 0.01) in piglets liver compared with MET group. Conclusion BPA diets fed to sows during gestation aggravated oxidative stress status in sows and piglets, while the methyl donor diets enhanced antioxidant capacity of sows and piglets and ameliorated oxidative stress induced by BPA.]]></description><subject>Actins - genetics</subject><subject>Actins - metabolism</subject><subject>Amino acids</subject><subject>Animal Feed</subject><subject>Animal Nutritional Physiological Phenomena</subject><subject>Animals</subject><subject>Antioxidant capacity</subject><subject>Antioxidants</subject><subject>Benzhydryl Compounds - toxicity</subject><subject>Betaine - administration &amp; dosage</subject><subject>Bisphenol A</subject><subject>Blood plasma</subject><subject>Catalase</subject><subject>Catalase - blood</subject><subject>Catalase - genetics</subject><subject>Choline - administration &amp; dosage</subject><subject>Copper</subject><subject>Cord blood</subject><subject>Diet</subject><subject>Diet - veterinary</subject><subject>Dietary Supplements</subject><subject>DNA methylation</subject><subject>Embryogenesis</subject><subject>Embryos</subject><subject>Female</subject><subject>Fetuses</subject><subject>Folic Acid - administration &amp; dosage</subject><subject>Gastroenterology and Hepatology</subject><subject>Gene expression</subject><subject>Gestation</subject><subject>Glutathione</subject><subject>Glutathione peroxidase</subject><subject>Glutathione Peroxidase - blood</subject><subject>Glutathione Peroxidase - genetics</subject><subject>Hogs</subject><subject>Homocysteine</subject><subject>Homocysteine - analogs &amp; derivatives</subject><subject>Homocysteine - blood</subject><subject>Liver</subject><subject>Malondialdehyde</subject><subject>Malondialdehyde - blood</subject><subject>Maternal Nutritional Physiological Phenomena</subject><subject>Metabolism</subject><subject>Methyl donor</subject><subject>Offspring</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>Peroxidase</subject><subject>Phenols - toxicity</subject><subject>Placenta</subject><subject>Placenta - chemistry</subject><subject>Pregnancy</subject><subject>Rodents</subject><subject>Sulfur</subject><subject>Superoxide dismutase</subject><subject>Superoxide Dismutase - blood</subject><subject>Superoxide Dismutase - genetics</subject><subject>Swine</subject><subject>Umbilical cord</subject><subject>Vitamin B 12 - administration &amp; dosage</subject><subject>Zinc</subject><issn>0899-9007</issn><issn>1873-1244</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kk-L1TAUxYMoznP0A7iRgJvZtOZf0wZBGAZHhREX6jrkJbczebZJTdrRt5jvbup7KszCTQLJ7xy451yEnlNSU0Llq10dlrlmhLY14TWh7AHa0K7lFWVCPEQb0ilVKULaE_Qk5x0hhCqpHqMTpihTTJANuvtoZkjBDHiE-WY_YBdDTDgv0zTACGE2s48BuyX5cI2vIR8fbFxCERo7Z7z1ebqBEAd8XvngFgsOx5_eFfIWcJ4T5Ix9wDn-yNiE8tn3eVoNn6JHvRkyPDvep-jr5dsvF--rq0_vPlycX1VWcDlX0hgpetP2XColt8oxynljZNfxZgtECuocOE6YsA4aTpTsHIimcw1hSlnGT9HZwXdK8ftShtCjzxaGwQSIS9YlFi5azpQo6Mt76C4ua0C_qUaIlsmVogfKpphzgl6XeUaT9poSvXajd7p0o9duNOG6dFM0L47Oy3YE91fxp4wCvD4AUKK49ZB0th5CidMnsLN20f_X_s09tR188NYM32AP-d8UOjNN9Od1OdbdoC0vZ0v5L1mhtgw</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Mou, Daolin, M.D</creator><creator>Wang, Jun, Ph.D</creator><creator>Liu, Hong, M.D</creator><creator>Chen, Yuling, M.D</creator><creator>Che, Lianqiang, Ph.D</creator><creator>Fang, Zhengfeng, Ph.D</creator><creator>Xu, Shengyu, Ph.D</creator><creator>Lin, Yan, Ph.D</creator><creator>Feng, Bin, Ph.D</creator><creator>Li, Jian, Ph.D</creator><creator>Wu, De, Ph.D</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7RV</scope><scope>7TS</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AN0</scope><scope>ASE</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FPQ</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K6X</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20180101</creationdate><title>Maternal methyl donor supplementation during gestation counteracts bisphenol A-induced oxidative stress in sows and offspring</title><author>Mou, Daolin, M.D ; Wang, Jun, Ph.D ; Liu, Hong, M.D ; Chen, Yuling, M.D ; Che, Lianqiang, Ph.D ; Fang, Zhengfeng, Ph.D ; Xu, Shengyu, Ph.D ; Lin, Yan, Ph.D ; Feng, Bin, Ph.D ; Li, Jian, Ph.D ; Wu, De, Ph.D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-6aa64fa7f36996b9d21335a68835be0641dded3024cde530968de458d50299c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Actins - genetics</topic><topic>Actins - metabolism</topic><topic>Amino acids</topic><topic>Animal Feed</topic><topic>Animal Nutritional Physiological Phenomena</topic><topic>Animals</topic><topic>Antioxidant capacity</topic><topic>Antioxidants</topic><topic>Benzhydryl Compounds - toxicity</topic><topic>Betaine - administration &amp; dosage</topic><topic>Bisphenol A</topic><topic>Blood plasma</topic><topic>Catalase</topic><topic>Catalase - blood</topic><topic>Catalase - genetics</topic><topic>Choline - administration &amp; dosage</topic><topic>Copper</topic><topic>Cord blood</topic><topic>Diet</topic><topic>Diet - veterinary</topic><topic>Dietary Supplements</topic><topic>DNA methylation</topic><topic>Embryogenesis</topic><topic>Embryos</topic><topic>Female</topic><topic>Fetuses</topic><topic>Folic Acid - administration &amp; dosage</topic><topic>Gastroenterology and Hepatology</topic><topic>Gene expression</topic><topic>Gestation</topic><topic>Glutathione</topic><topic>Glutathione peroxidase</topic><topic>Glutathione Peroxidase - blood</topic><topic>Glutathione Peroxidase - genetics</topic><topic>Hogs</topic><topic>Homocysteine</topic><topic>Homocysteine - analogs &amp; derivatives</topic><topic>Homocysteine - blood</topic><topic>Liver</topic><topic>Malondialdehyde</topic><topic>Malondialdehyde - blood</topic><topic>Maternal Nutritional Physiological Phenomena</topic><topic>Metabolism</topic><topic>Methyl donor</topic><topic>Offspring</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>Peroxidase</topic><topic>Phenols - toxicity</topic><topic>Placenta</topic><topic>Placenta - chemistry</topic><topic>Pregnancy</topic><topic>Rodents</topic><topic>Sulfur</topic><topic>Superoxide dismutase</topic><topic>Superoxide Dismutase - blood</topic><topic>Superoxide Dismutase - genetics</topic><topic>Swine</topic><topic>Umbilical cord</topic><topic>Vitamin B 12 - administration &amp; dosage</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mou, Daolin, M.D</creatorcontrib><creatorcontrib>Wang, Jun, Ph.D</creatorcontrib><creatorcontrib>Liu, Hong, M.D</creatorcontrib><creatorcontrib>Chen, Yuling, M.D</creatorcontrib><creatorcontrib>Che, Lianqiang, Ph.D</creatorcontrib><creatorcontrib>Fang, Zhengfeng, Ph.D</creatorcontrib><creatorcontrib>Xu, Shengyu, Ph.D</creatorcontrib><creatorcontrib>Lin, Yan, Ph.D</creatorcontrib><creatorcontrib>Feng, Bin, Ph.D</creatorcontrib><creatorcontrib>Li, Jian, Ph.D</creatorcontrib><creatorcontrib>Wu, De, Ph.D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Physical Education Index</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>British Nursing Index</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>British Nursing Index (BNI) (1985 to Present)</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>British Nursing Index</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Nutrition (Burbank, Los Angeles County, Calif.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mou, Daolin, M.D</au><au>Wang, Jun, Ph.D</au><au>Liu, Hong, M.D</au><au>Chen, Yuling, M.D</au><au>Che, Lianqiang, Ph.D</au><au>Fang, Zhengfeng, Ph.D</au><au>Xu, Shengyu, Ph.D</au><au>Lin, Yan, Ph.D</au><au>Feng, Bin, Ph.D</au><au>Li, Jian, Ph.D</au><au>Wu, De, Ph.D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maternal methyl donor supplementation during gestation counteracts bisphenol A-induced oxidative stress in sows and offspring</atitle><jtitle>Nutrition (Burbank, Los Angeles County, Calif.)</jtitle><addtitle>Nutrition</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>45</volume><spage>76</spage><epage>84</epage><pages>76-84</pages><issn>0899-9007</issn><eissn>1873-1244</eissn><abstract><![CDATA[Abstract Objective Maternal oxidative stress is harmful for embryonic, fetal and placental development. This experiment was conducted to investigate whether methyl donor supplementation during gestation effectively ameliorates maternal and placenta oxidative stress up to offspring. Methods Fifty-six Landrace × Yorkshire sows were randomly allocated to receive one of the following four diets during gestation: control diet (CON); control diet supplemented with methyl donor (MET); control diet supplemented with bisphenol-A (BPA); and control diet supplemented with BPA and MET (BPA + MET). Blood sample, chorioallantois and piglets liver samples were analyzed for antioxidant status and mRNA expression of genes in regard to oxidative status. Results MET diets lowered homocysteine concentration in sows plasma, improved activity of antioxidant enzymes in chorioallantois and piglets plasma, liver (catalase, glutathione peroxidase and total antioxidant capacity, p < 0.01), as also upregulated mRNA expression of Cu,Zn superoxide dismutase (p < 0.01) and glutathione peroxidase 1 (p < 0.05) in the chorioallantois and CAT (p < 0.01) in piglets liver compared with control group. In contrast, BPA diets increased malondialdehyde (p < 0.01) level in sows and piglets and decreased T-AOC (p < 0.01) concentration in sows and umbilical cord blood plasma, as also down-regulated Cu,Zn-SOD (p = 0.01) in piglets liver compared with MET group. Conclusion BPA diets fed to sows during gestation aggravated oxidative stress status in sows and piglets, while the methyl donor diets enhanced antioxidant capacity of sows and piglets and ameliorated oxidative stress induced by BPA.]]></abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29129240</pmid><doi>10.1016/j.nut.2017.03.012</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0899-9007
ispartof Nutrition (Burbank, Los Angeles County, Calif.), 2018-01, Vol.45, p.76-84
issn 0899-9007
1873-1244
language eng
recordid cdi_proquest_miscellaneous_1963473294
source MEDLINE; Access via ScienceDirect (Elsevier); ProQuest Central UK/Ireland
subjects Actins - genetics
Actins - metabolism
Amino acids
Animal Feed
Animal Nutritional Physiological Phenomena
Animals
Antioxidant capacity
Antioxidants
Benzhydryl Compounds - toxicity
Betaine - administration & dosage
Bisphenol A
Blood plasma
Catalase
Catalase - blood
Catalase - genetics
Choline - administration & dosage
Copper
Cord blood
Diet
Diet - veterinary
Dietary Supplements
DNA methylation
Embryogenesis
Embryos
Female
Fetuses
Folic Acid - administration & dosage
Gastroenterology and Hepatology
Gene expression
Gestation
Glutathione
Glutathione peroxidase
Glutathione Peroxidase - blood
Glutathione Peroxidase - genetics
Hogs
Homocysteine
Homocysteine - analogs & derivatives
Homocysteine - blood
Liver
Malondialdehyde
Malondialdehyde - blood
Maternal Nutritional Physiological Phenomena
Metabolism
Methyl donor
Offspring
Oxidative stress
Oxidative Stress - drug effects
Peroxidase
Phenols - toxicity
Placenta
Placenta - chemistry
Pregnancy
Rodents
Sulfur
Superoxide dismutase
Superoxide Dismutase - blood
Superoxide Dismutase - genetics
Swine
Umbilical cord
Vitamin B 12 - administration & dosage
Zinc
title Maternal methyl donor supplementation during gestation counteracts bisphenol A-induced oxidative stress in sows and offspring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T00%3A00%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maternal%20methyl%20donor%20supplementation%20during%20gestation%20counteracts%20bisphenol%20A-induced%20oxidative%20stress%20in%20sows%20and%20offspring&rft.jtitle=Nutrition%20(Burbank,%20Los%20Angeles%20County,%20Calif.)&rft.au=Mou,%20Daolin,%20M.D&rft.date=2018-01-01&rft.volume=45&rft.spage=76&rft.epage=84&rft.pages=76-84&rft.issn=0899-9007&rft.eissn=1873-1244&rft_id=info:doi/10.1016/j.nut.2017.03.012&rft_dat=%3Cproquest_cross%3E1963473294%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1965447264&rft_id=info:pmid/29129240&rft_els_id=S0899900717300771&rfr_iscdi=true