“Swarm relaxation”: Equilibrating a large ensemble of computer simulations

. It is common practice in molecular dynamics and Monte Carlo computer simulations to run multiple, separately-initialized simulations in order to improve the sampling of independent microstates. Here we examine the utility of an extreme case of this strategy, in which we run a large ensemble of M i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. E, Soft matter and biological physics Soft matter and biological physics, 2017-11, Vol.40 (11), p.98-11, Article 98
Hauptverfasser: Malek, Shahrazad M. A., Bowles, Richard K., Saika-Voivod, Ivan, Sciortino, Francesco, Poole, Peter H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 11
container_start_page 98
container_title The European physical journal. E, Soft matter and biological physics
container_volume 40
creator Malek, Shahrazad M. A.
Bowles, Richard K.
Saika-Voivod, Ivan
Sciortino, Francesco
Poole, Peter H.
description . It is common practice in molecular dynamics and Monte Carlo computer simulations to run multiple, separately-initialized simulations in order to improve the sampling of independent microstates. Here we examine the utility of an extreme case of this strategy, in which we run a large ensemble of M independent simulations (a “swarm”), each of which is relaxed to equilibrium. We show that if M is of order 10 3 , we can monitor the swarm’s relaxation to equilibrium, and confirm its attainment, within ∼ 10 τ ¯ , where τ ¯ is the equilibrium relaxation time. As soon as a swarm of this size attains equilibrium, the ensemble of M final microstates from each run is sufficient for the evaluation of most equilibrium properties without further sampling. This approach dramatically reduces the wall-clock time required, compared to a single long simulation, by a factor of several hundred, at the cost of an increase in the total computational effort by a small factor. It is also well suited to modern computing systems having thousands of processors, and is a viable strategy for simulation studies that need to produce high-precision results in a minimum of wall-clock time. We present results obtained by applying this approach to several test cases. Graphical abstract
doi_str_mv 10.1140/epje/i2017-11588-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1962425172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1961835409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-cc191d05a7d3af646074557be6809d640b261cfba5192cb414c473e17dee54883</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMotlZfwIUMuHEzNieTzMWdlHqBogsV3IVM5kyZMrcmHdRdH0Rfrk_iTFuLCK4Sku__z-Ej5BToJQCnQ6xnOMwYhcAFEGHosj3SBxYxN4zE6_7uzqFHjqydUUrbmHdIeiwCiFgIffKwWn4-vSlTOAZz9a4WWVWull9XznjeZHkWm_alnDrKyZWZooOlxSLO0alSR1dF3SzQODYrmnydtMfkIFW5xZPtOSAvN-Pn0Z07eby9H11PXO0FYuFqDREkVKgg8VTqc58GXIggRj-kUeJzGjMfdBor0a6pYw5c88BDCBJEwcPQG5CLTW9tqnmDdiGLzGrMc1Vi1VgJkc84ExCwFj3_g86qxpTtdh0FoSc4jVqKbShtKmsNprI2WaHMhwQqO9uysy3XtuXatuyqz7bVTVxgsov86G0BbwPY9qucovk1-__ab86kjdo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1961835409</pqid></control><display><type>article</type><title>“Swarm relaxation”: Equilibrating a large ensemble of computer simulations</title><source>SpringerLink Journals</source><creator>Malek, Shahrazad M. A. ; Bowles, Richard K. ; Saika-Voivod, Ivan ; Sciortino, Francesco ; Poole, Peter H.</creator><creatorcontrib>Malek, Shahrazad M. A. ; Bowles, Richard K. ; Saika-Voivod, Ivan ; Sciortino, Francesco ; Poole, Peter H.</creatorcontrib><description>. It is common practice in molecular dynamics and Monte Carlo computer simulations to run multiple, separately-initialized simulations in order to improve the sampling of independent microstates. Here we examine the utility of an extreme case of this strategy, in which we run a large ensemble of M independent simulations (a “swarm”), each of which is relaxed to equilibrium. We show that if M is of order 10 3 , we can monitor the swarm’s relaxation to equilibrium, and confirm its attainment, within ∼ 10 τ ¯ , where τ ¯ is the equilibrium relaxation time. As soon as a swarm of this size attains equilibrium, the ensemble of M final microstates from each run is sufficient for the evaluation of most equilibrium properties without further sampling. This approach dramatically reduces the wall-clock time required, compared to a single long simulation, by a factor of several hundred, at the cost of an increase in the total computational effort by a small factor. It is also well suited to modern computing systems having thousands of processors, and is a viable strategy for simulation studies that need to produce high-precision results in a minimum of wall-clock time. We present results obtained by applying this approach to several test cases. Graphical abstract</description><identifier>ISSN: 1292-8941</identifier><identifier>EISSN: 1292-895X</identifier><identifier>DOI: 10.1140/epje/i2017-11588-2</identifier><identifier>PMID: 29119281</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Advances in Computational Methods for Soft Matter Systems ; Biological and Medical Physics ; Biophysics ; Complex Fluids and Microfluidics ; Complex Systems ; Computer simulation ; Condensed matter physics ; Equilibrium ; Molecular dynamics ; Nanotechnology ; Physics ; Physics and Astronomy ; Polymer Sciences ; Processors ; Regular Article ; Relaxation time ; Sampling ; Simulation ; Soft and Granular Matter ; Surfaces and Interfaces ; Thin Films</subject><ispartof>The European physical journal. E, Soft matter and biological physics, 2017-11, Vol.40 (11), p.98-11, Article 98</ispartof><rights>EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-cc191d05a7d3af646074557be6809d640b261cfba5192cb414c473e17dee54883</citedby><cites>FETCH-LOGICAL-c375t-cc191d05a7d3af646074557be6809d640b261cfba5192cb414c473e17dee54883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epje/i2017-11588-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epje/i2017-11588-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29119281$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Malek, Shahrazad M. A.</creatorcontrib><creatorcontrib>Bowles, Richard K.</creatorcontrib><creatorcontrib>Saika-Voivod, Ivan</creatorcontrib><creatorcontrib>Sciortino, Francesco</creatorcontrib><creatorcontrib>Poole, Peter H.</creatorcontrib><title>“Swarm relaxation”: Equilibrating a large ensemble of computer simulations</title><title>The European physical journal. E, Soft matter and biological physics</title><addtitle>Eur. Phys. J. E</addtitle><addtitle>Eur Phys J E Soft Matter</addtitle><description>. It is common practice in molecular dynamics and Monte Carlo computer simulations to run multiple, separately-initialized simulations in order to improve the sampling of independent microstates. Here we examine the utility of an extreme case of this strategy, in which we run a large ensemble of M independent simulations (a “swarm”), each of which is relaxed to equilibrium. We show that if M is of order 10 3 , we can monitor the swarm’s relaxation to equilibrium, and confirm its attainment, within ∼ 10 τ ¯ , where τ ¯ is the equilibrium relaxation time. As soon as a swarm of this size attains equilibrium, the ensemble of M final microstates from each run is sufficient for the evaluation of most equilibrium properties without further sampling. This approach dramatically reduces the wall-clock time required, compared to a single long simulation, by a factor of several hundred, at the cost of an increase in the total computational effort by a small factor. It is also well suited to modern computing systems having thousands of processors, and is a viable strategy for simulation studies that need to produce high-precision results in a minimum of wall-clock time. We present results obtained by applying this approach to several test cases. Graphical abstract</description><subject>Advances in Computational Methods for Soft Matter Systems</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Complex Fluids and Microfluidics</subject><subject>Complex Systems</subject><subject>Computer simulation</subject><subject>Condensed matter physics</subject><subject>Equilibrium</subject><subject>Molecular dynamics</subject><subject>Nanotechnology</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polymer Sciences</subject><subject>Processors</subject><subject>Regular Article</subject><subject>Relaxation time</subject><subject>Sampling</subject><subject>Simulation</subject><subject>Soft and Granular Matter</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>1292-8941</issn><issn>1292-895X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUhoMotlZfwIUMuHEzNieTzMWdlHqBogsV3IVM5kyZMrcmHdRdH0Rfrk_iTFuLCK4Sku__z-Ej5BToJQCnQ6xnOMwYhcAFEGHosj3SBxYxN4zE6_7uzqFHjqydUUrbmHdIeiwCiFgIffKwWn4-vSlTOAZz9a4WWVWull9XznjeZHkWm_alnDrKyZWZooOlxSLO0alSR1dF3SzQODYrmnydtMfkIFW5xZPtOSAvN-Pn0Z07eby9H11PXO0FYuFqDREkVKgg8VTqc58GXIggRj-kUeJzGjMfdBor0a6pYw5c88BDCBJEwcPQG5CLTW9tqnmDdiGLzGrMc1Vi1VgJkc84ExCwFj3_g86qxpTtdh0FoSc4jVqKbShtKmsNprI2WaHMhwQqO9uysy3XtuXatuyqz7bVTVxgsov86G0BbwPY9qucovk1-__ab86kjdo</recordid><startdate>20171110</startdate><enddate>20171110</enddate><creator>Malek, Shahrazad M. A.</creator><creator>Bowles, Richard K.</creator><creator>Saika-Voivod, Ivan</creator><creator>Sciortino, Francesco</creator><creator>Poole, Peter H.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20171110</creationdate><title>“Swarm relaxation”: Equilibrating a large ensemble of computer simulations</title><author>Malek, Shahrazad M. A. ; Bowles, Richard K. ; Saika-Voivod, Ivan ; Sciortino, Francesco ; Poole, Peter H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-cc191d05a7d3af646074557be6809d640b261cfba5192cb414c473e17dee54883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Advances in Computational Methods for Soft Matter Systems</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Complex Fluids and Microfluidics</topic><topic>Complex Systems</topic><topic>Computer simulation</topic><topic>Condensed matter physics</topic><topic>Equilibrium</topic><topic>Molecular dynamics</topic><topic>Nanotechnology</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polymer Sciences</topic><topic>Processors</topic><topic>Regular Article</topic><topic>Relaxation time</topic><topic>Sampling</topic><topic>Simulation</topic><topic>Soft and Granular Matter</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malek, Shahrazad M. A.</creatorcontrib><creatorcontrib>Bowles, Richard K.</creatorcontrib><creatorcontrib>Saika-Voivod, Ivan</creatorcontrib><creatorcontrib>Sciortino, Francesco</creatorcontrib><creatorcontrib>Poole, Peter H.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malek, Shahrazad M. A.</au><au>Bowles, Richard K.</au><au>Saika-Voivod, Ivan</au><au>Sciortino, Francesco</au><au>Poole, Peter H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>“Swarm relaxation”: Equilibrating a large ensemble of computer simulations</atitle><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle><stitle>Eur. Phys. J. E</stitle><addtitle>Eur Phys J E Soft Matter</addtitle><date>2017-11-10</date><risdate>2017</risdate><volume>40</volume><issue>11</issue><spage>98</spage><epage>11</epage><pages>98-11</pages><artnum>98</artnum><issn>1292-8941</issn><eissn>1292-895X</eissn><abstract>. It is common practice in molecular dynamics and Monte Carlo computer simulations to run multiple, separately-initialized simulations in order to improve the sampling of independent microstates. Here we examine the utility of an extreme case of this strategy, in which we run a large ensemble of M independent simulations (a “swarm”), each of which is relaxed to equilibrium. We show that if M is of order 10 3 , we can monitor the swarm’s relaxation to equilibrium, and confirm its attainment, within ∼ 10 τ ¯ , where τ ¯ is the equilibrium relaxation time. As soon as a swarm of this size attains equilibrium, the ensemble of M final microstates from each run is sufficient for the evaluation of most equilibrium properties without further sampling. This approach dramatically reduces the wall-clock time required, compared to a single long simulation, by a factor of several hundred, at the cost of an increase in the total computational effort by a small factor. It is also well suited to modern computing systems having thousands of processors, and is a viable strategy for simulation studies that need to produce high-precision results in a minimum of wall-clock time. We present results obtained by applying this approach to several test cases. Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>29119281</pmid><doi>10.1140/epje/i2017-11588-2</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1292-8941
ispartof The European physical journal. E, Soft matter and biological physics, 2017-11, Vol.40 (11), p.98-11, Article 98
issn 1292-8941
1292-895X
language eng
recordid cdi_proquest_miscellaneous_1962425172
source SpringerLink Journals
subjects Advances in Computational Methods for Soft Matter Systems
Biological and Medical Physics
Biophysics
Complex Fluids and Microfluidics
Complex Systems
Computer simulation
Condensed matter physics
Equilibrium
Molecular dynamics
Nanotechnology
Physics
Physics and Astronomy
Polymer Sciences
Processors
Regular Article
Relaxation time
Sampling
Simulation
Soft and Granular Matter
Surfaces and Interfaces
Thin Films
title “Swarm relaxation”: Equilibrating a large ensemble of computer simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T05%3A43%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%E2%80%9CSwarm%20relaxation%E2%80%9D:%20Equilibrating%20a%20large%20ensemble%20of%20computer%20simulations&rft.jtitle=The%20European%20physical%20journal.%20E,%20Soft%20matter%20and%20biological%20physics&rft.au=Malek,%20Shahrazad%20M.%20A.&rft.date=2017-11-10&rft.volume=40&rft.issue=11&rft.spage=98&rft.epage=11&rft.pages=98-11&rft.artnum=98&rft.issn=1292-8941&rft.eissn=1292-895X&rft_id=info:doi/10.1140/epje/i2017-11588-2&rft_dat=%3Cproquest_cross%3E1961835409%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1961835409&rft_id=info:pmid/29119281&rfr_iscdi=true