Indel evolution of mammalian introns and the utility of non-coding nuclear markers in eutherian phylogenetics
Nuclear DNA intron sequences are increasingly used to investigate evolutionary relationships among closely related organisms. The phylogenetic usefulness of intron sequences at higher taxonomic levels has, however, not been firmly established and very few studies have used these markers to address e...
Gespeichert in:
Veröffentlicht in: | Molecular phylogenetics and evolution 2007-03, Vol.42 (3), p.827-837 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nuclear DNA intron sequences are increasingly used to investigate evolutionary relationships among closely related organisms. The phylogenetic usefulness of intron sequences at higher taxonomic levels has, however, not been firmly established and very few studies have used these markers to address evolutionary questions above the family level. In addition, the mechanisms driving intron evolution are not well understood. We compared DNA sequence data derived from three presumably independently segregating introns (THY, PRKC I and MGF) across 158 mammalian species. All currently recognized extant eutherian mammalian orders were included with the exception of Cingulata, Dermoptera and Scandentia. The total aligned length of the data was 6366 base pairs (bp); after the exclusion of autapomorphic insertions, 1511
bp were analyzed. In many instances the Bayesian and parsimony analyses were complementary and gave significant posterior probability and bootstrap support (>80) for the monophyly of Afrotheria, Euarchontoglires, Laurasiatheria and Boreoeutheria. Apart from finding congruent support when using these methods, the intron data also provided several indels longer than 3
bp that support, among others, the monophyly of Afrotheria, Paenungulata, Ferae and Boreoeutheria. A quantitative analysis of insertions and deletions suggested that there was a 75% bias towards deletions. The average insertion size in the mammalian data set was 16.49
bp
±
57.70 while the average deletion was much smaller (4.47
bp
±
14.17). The tendency towards large insertions and small deletions is highlighted by the observation that out of a total of 17 indels larger than 100
bp, 15 were insertions. The majority of indels (>60% of all events) were 1 or 2
bp changes. Although the average overall indel substitution rate of 0.00559 per site is comparable to that previously reported for rodents and primates, individual analyses among different evolutionary lineages provide evidence for differences in the formation rate of indels among the different mammalian groups. |
---|---|
ISSN: | 1055-7903 1095-9513 |
DOI: | 10.1016/j.ympev.2006.10.002 |