Contrast enhanced μCT imaging of early articular changes in a pre-clinical model of osteoarthritis

The objective of this study was to characterize early osteoarthritis (OA) development in cartilage and bone tissues in the rat medial meniscus transection (MMT) model using non-destructive equilibrium partitioning of an ionic contrast agent micro-computed tomography (EPIC-μCT) imaging. Cartilage fib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Osteoarthritis and cartilage 2018-01, Vol.26 (1), p.118-127
Hauptverfasser: Reece, D.S., Thote, T., Lin, A.S.P., Willett, N.J., Guldberg, R.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The objective of this study was to characterize early osteoarthritis (OA) development in cartilage and bone tissues in the rat medial meniscus transection (MMT) model using non-destructive equilibrium partitioning of an ionic contrast agent micro-computed tomography (EPIC-μCT) imaging. Cartilage fibrillation, one of the first physiological developments in OA, was quantified in the rat tibial plateau as three-dimensional (3D) cartilage surface roughness using a custom surface-rendering algorithm. Male Lewis rats underwent MMT or sham-operation in the left leg. At 1- and 3-weeks post-surgery, the animals (n = 7–8 per group) were euthanized and the left legs were scanned using EPIC-μCT imaging to quantify cartilage and bone parameters. In addition, a custom algorithm was developed to measure the roughness of 3D surfaces. This algorithm was validated and used to quantify cartilage surface roughness changes as a function of time post-surgery. MMT surgery resulted in significantly greater cartilage damage and subchondral bone sclerosis with the damage increasing in both severity and area from 1- to 3-weeks post-surgery. Analysis of rendered 3D surfaces could accurately distinguish early changes in joints developing OA, detecting significant increases of 45% and 124% in surface roughness at 1- and 3-weeks post-surgery respectively. Disease progression in the MMT model progresses sequentially through changes in the cartilage articular surface, extracellular matrix composition, and then osteophyte mineralization and subchondral bone sclerosis. Cartilage surface roughness is a quantitative, early indicator of degenerative joint disease in small animal OA models and can potentially be used to evaluate therapeutic strategies.
ISSN:1063-4584
1522-9653
DOI:10.1016/j.joca.2017.10.017