Corin protects H2O2-induced apoptosis through PI3K/AKT and NF-κB pathway in cardiomyocytes

The functional role of corin in H2O2-induced apoptosis is largely unexplored. The present study investigated the protective role of corin against cell injury by possible involvement of PI3K/AKT and NF-kB signaling pathways in cardiomyocytes. Cardiomyocytes H9c2 and HL-1 cells were used in the study....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedicine & pharmacotherapy 2018-01, Vol.97, p.594-599
Hauptverfasser: Li, Yansong, Xia, Jingwen, Jiang, Nianxin, Xian, Yuqiong, Ju, Haining, Wei, Yong, Zhang, Xuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The functional role of corin in H2O2-induced apoptosis is largely unexplored. The present study investigated the protective role of corin against cell injury by possible involvement of PI3K/AKT and NF-kB signaling pathways in cardiomyocytes. Cardiomyocytes H9c2 and HL-1 cells were used in the study. Cell viability was measured using CCK-8 assay; cell apoptosis was analyzed by flow cytometry, TUNEL assay, and western blot; and cell migration was measured using wound healing assay. The fluorescent intensities of reactive oxygen species (ROS) were measured using a flow cytometer. Quantitative RT-PCR was used to measure the mRNA expression of corin. Western blot was used to measure the protein expression of corin, apoptosis-related proteins (Bax, cleaved-Caspase-3 and -9), and PI3K/AKT and NF-κB signaling pathway proteins. Treatment with H2O2 (150μM, 6h) significantly decreased cell viability and relative migration, increased apoptosis, and decreased the expression of corin in H9c2 and HL-1 cells. Overexpression of corin alleviated the H2O2-induced cell injury by increasing cell viability and migration and decreasing apoptosis in the cardiomyocytes. Overexpression of corin also decreased the ROS level in the cardiomyocytes likely through upregulating HIF-1α. These effects of corin on the cell injury might be mediated via the corin-induced activations of PI3K/AKT and NF-κB signaling pathways. Overexpression of corin protected cardiomyocytes from H2O2-induced injury by decreasing apoptosis and ROS level via activations of the PI3K/AKT and NF-κB signaling pathways and upregulating HIF-1α.
ISSN:0753-3322
1950-6007
DOI:10.1016/j.biopha.2017.10.090