Antiferromagnetic Pyrite as the Tumor Microenvironment‐Mediated Nanoplatform for Self‐Enhanced Tumor Imaging and Therapy

Several decades of research have identified the specific tumor microenvironment (TME) to develop promising nanotheranostics, such as pH‐sensitive imaging, acidity‐sensitive starving therapy, and hydrogen peroxide‐activated chemotherapy, etc. Herein, a novel TME‐mediated nanoplatform employing antife...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2017-12, Vol.29 (47), p.n/a
Hauptverfasser: Tang, Zhongmin, Zhang, Huilin, Liu, Yanyan, Ni, Dalong, Zhang, Hua, Zhang, Jiawen, Yao, Zhenwei, He, Mingyuan, Shi, Jianlin, Bu, Wenbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Several decades of research have identified the specific tumor microenvironment (TME) to develop promising nanotheranostics, such as pH‐sensitive imaging, acidity‐sensitive starving therapy, and hydrogen peroxide‐activated chemotherapy, etc. Herein, a novel TME‐mediated nanoplatform employing antiferromagnetic pyrite nanocubes is presented, exploiting the intratumoral, overproduced peroxide for self‐enhanced magnetic resonance imaging (MRI) and photothermal therapy (PTT)/chemodynamic therapy (CDT). Through the activation of excessive peroxide in the tumor microenvironment, pyrite can lead to in situ surface oxidation and generate hydroxyl radicals to kill tumor cells (i.e., CDT). The increase of the valence state of surface Fe significantly promotes the performance of MRI accompanied by CDT. Furthermore, the localized heat by photothermal treatment can accelerate the intratumoral Fenton process, enabling a synergetic PTT/CDT. To our best knowledge, this is the first study to use the TME‐response valence‐variable strategy based on pyrite for developing a synergetic nanotheranostic, which will open up a new dimension for the design of other TME‐based anticancer strategies. An innovative tumor microenvironment‐mediated nanoplatform for self‐enhanced magnetic resonance imaging and chemodynamic therapy/photothermal therapy is developed.
ISSN:0935-9648
1521-4095
DOI:10.1002/adma.201701683