Mineralogical and geochemical alteration of Hitura sulphide mine tailings with emphasis on nickel mobility and retention

Weathering of Hitura (W Finland) nickel sulphide mine tailings and release of heavy metals into pore water was studied with mineralogical (optical and electron microscopy, X-ray diffraction) and geochemical methods (selective extractions). Tailings were composed largely of serpentine, micas and amph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geochemical exploration 2008-04, Vol.97 (1), p.1-20
Hauptverfasser: Heikkinen, Päivi M., Räisänen, Marja L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Weathering of Hitura (W Finland) nickel sulphide mine tailings and release of heavy metals into pore water was studied with mineralogical (optical and electron microscopy, X-ray diffraction) and geochemical methods (selective extractions). Tailings were composed largely of serpentine, micas and amphiboles with only minor carbonates and sulphides. Sulphides, especially pyrrhotite, have oxidized intensively in the shallow tailings in 10–15 years, but a majority of the tailings have remained unchanged. Oxidation has resulted in depletion of carbonates, slightly decreased pH, and heavy metal (Ni, Zn) release in pore water as well as in the precipitation of secondary Fe precipitates. Nevertheless, in the middle of the tailings area, where the oxidation front moves primarily downward, released heavy metals have been adsorbed and immobilized with these precipitates deeper in the oxidation zone. In contrast to what was seen in pore water pH, but in accordance with static tests of the previous studies, the neutralisation potential ratio (NPR) calculated based on the mineralogical composition and the total sulphur content suggested that tailings are ‘not potentially acid mine drainage (AMD) generating’. However, the calculated buffering capacity of the tailings resulted largely from the abundant serpentine because of the low carbonate content. Despite its slow weathering rate, serpentine may buffer the acidity to some extent through ion exchange processes in fine ground tailings. Nevertheless, in practice, acid production capacity of the tailings depends primarily on the balance between Ca–Mg carbonates and iron sulphides. NPR calculation based on carbonate and sulphur contents suggested, that the Hitura tailings are ‘likely AMD generating’. The study shows that sulphide oxidation can be significant in mobilisation of heavy metals even in apparently non-acid producing, low sulphide tailings. Therefore, prevention of oxygen diffusion into tailings is also essential in this type of sulphide tailings.
ISSN:0375-6742
1879-1689
DOI:10.1016/j.gexplo.2007.09.001