Field scale characterization and modeling of contaminant release from a coal tar source zone
A coal tar contaminated site was characterized using traditional and innovative investigation methods. A careful interpretation of hydrogeological and hydrogeochemical data allowed for the conceptualization of the heterogeneous coal tar distribution in the subsurface. Past and future contaminant rel...
Gespeichert in:
Veröffentlicht in: | Journal of contaminant hydrology 2008-11, Vol.102 (1), p.120-139 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A coal tar contaminated site was characterized using traditional and innovative investigation methods. A careful interpretation of hydrogeological and hydrogeochemical data allowed for the conceptualization of the heterogeneous coal tar distribution in the subsurface. Past and future contaminant release from the source zone was calculated using a modeling framework consisting of a three-dimensional steady-state groundwater flow model (MODFLOW) and two hydrogeochemical models (MIN3P). Computational time of long-term simulations was reduced by simplifying the coal tar composition using 3 composite and 2 individual constituents and sequential application of a 2D centerline model (for calibration and predictions) and a 3D model (only for predictions). Predictions were carried out for a period of 1000 years. The results reveal that contaminant mass flux is governed by the geometry of zones containing residual coal tar, amount of coal tar, its composition and the physicochemical properties of the constituents. The long-term predictions made using the 2D model show that even after 1000 years, source depletion will be small with respect to phenanthrene, 89% of initial mass will be still available, and for the moderately and sparingly soluble composite constituents, 60% and 98%, respectively. |
---|---|
ISSN: | 0169-7722 1873-6009 |
DOI: | 10.1016/j.jconhyd.2008.03.011 |