Highly efficient and broadband mid-infrared metamaterial thermal emitter for optical gas sensing
Development of a novel, cost-effective, and highly efficient mid-infrared light source has been identified as a major scientific and technological goal within the area of optical gas sensing. We have proposed and investigated a mid-infrared metamaterial thermal emitter based on micro-structured chro...
Gespeichert in:
Veröffentlicht in: | Optics letters 2017-11, Vol.42 (21), p.4537-4540 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Development of a novel, cost-effective, and highly efficient mid-infrared light source has been identified as a major scientific and technological goal within the area of optical gas sensing. We have proposed and investigated a mid-infrared metamaterial thermal emitter based on micro-structured chromium thin film. The results demonstrate that the proposed thermal light source supports broadband and wide angular absorption of both TE- and TM-polarized light, giving rise to broadband thermal radiation with averaged emissivity of ∼0.94 in a mid-infrared atmospheric window of 8-14 μm. The proposed microphotonic concept provides a promising alternative mid-infrared source and paves the way towards novel optical gas sensing platforms for many applications. |
---|---|
ISSN: | 0146-9592 1539-4794 |
DOI: | 10.1364/OL.42.004537 |