Manganese-induced neurotoxicity is differentially enhanced by glutathione depletion in astrocytoma and neuroblastoma cells

Manganese (Mn) is neurotoxic: the underlying mechanisms have not been fully elucidated. L: -Buthionine-(S,R)-sulfoximine (BSO) is an irreversible inhibitor of gamma-glutamylcysteine synthetase, an important enzyme in glutathione (GSH) synthesis. To test the hypothesis that BSO modulates Mn toxicity,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurochemical research 2006-11, Vol.31 (11), p.1349-1357
Hauptverfasser: Dukhande, Vikas V, Malthankar-Phatak, Gauri H, Hugus, Jeremy J, Daniels, Christopher K, Lai, James C K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Manganese (Mn) is neurotoxic: the underlying mechanisms have not been fully elucidated. L: -Buthionine-(S,R)-sulfoximine (BSO) is an irreversible inhibitor of gamma-glutamylcysteine synthetase, an important enzyme in glutathione (GSH) synthesis. To test the hypothesis that BSO modulates Mn toxicity, we investigated the effects of treatment of U-87 or SK-N-SH cells with MnCl(2), BSO, or MnCl(2) plus BSO. We monitored cell viability using MTT assay, staining with HO-33342 to assess live and/or apoptotic cells, and staining with propidium iodide (PI) to assess necrotic cells; we also measured cellular glutathione. Our results indicate decreased viability in both cell types when treated with MnCl(2) or BSO: Mn was more toxic to SK-N-SH cells, whereas BSO was more toxic to U-87 cells. Because BSO treatment accentuated Mn toxicity in both cell lines, GSH may act to combat Mn toxicity. Thus, further investigation in oxidative stress mediated by glutathione depletion will unravel new Mn toxicity mechanism(s).
ISSN:0364-3190
1573-6903
DOI:10.1007/s11064-006-9179-7