Ingestion of the dinoflagellate, Pfiesteria piscicida, by the calanoid copepod, Acartia tonsa
The dinoflagellate, Pfiesteria piscicida, can form harmful algal blooms in estuarine environments. The dominant copepod species usually found in these waters is Acartia tonsa. We tested the ability of A. tonsa to graze the non-toxic zoospore stage of P. piscicida and thus serve as a potential biolog...
Gespeichert in:
Veröffentlicht in: | Harmful algae 2006-09, Vol.5 (4), p.435-441 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The dinoflagellate,
Pfiesteria piscicida, can form harmful algal blooms in estuarine environments. The dominant copepod species usually found in these waters is
Acartia tonsa. We tested the ability of
A. tonsa to graze the non-toxic zoospore stage of
P. piscicida and thus serve as a potential biological control of blooms of this algal species.
A. tonsa grazed the non-toxic zoospore stages of both a non-inducible
P. piscicida strain (FDEPMDR23) and a potentially toxic strain (Tox-B101156) at approximately equal rates. Ingestion of
P. piscicida increased with cell concentration and exhibited a saturated feeding response. Both the maximum number of cells ingested (
I
max) and the slope of the ingestion curve (
α) of
A. tonsa feeding on
P. piscicida were comparable to these ingestion parameters for
A. tonsa fed similar-sized phytoplankton and protozoan species. When these laboratory ingestion rates were combined with abundance estimates of
A. tonsa from the Pocomoke Estuary and Chesapeake Bay, we found that significant grazing control of the non-toxic zoospore stage of
P. piscicida by
A. tonsa would only occur at high copepod abundances (>10
copepods
L
−1). We conclude that under most in situ conditions the potential biological control of blooms of
P. piscicida is exerted by microzooplankton grazers. However, in the less saline portions of estuaries where maximum concentrations of copepods often occur with low abundances of microzooplankton, copepod grazing coefficients can be similar to the growth rates of
P. piscicida. |
---|---|
ISSN: | 1568-9883 1878-1470 |
DOI: | 10.1016/j.hal.2006.05.003 |