Stochastic Neural Network Approach for Learning High-Dimensional Free Energy Surfaces
The generation of free energy landscapes corresponding to conformational equilibria in complex molecular systems remains a significant computational challenge. Adding to this challenge is the need to represent, store, and manipulate the often high-dimensional surfaces that result from rare-event sam...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2017-10, Vol.119 (15), p.150601-150601, Article 150601 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The generation of free energy landscapes corresponding to conformational equilibria in complex molecular systems remains a significant computational challenge. Adding to this challenge is the need to represent, store, and manipulate the often high-dimensional surfaces that result from rare-event sampling approaches employed to compute them. In this Letter, we propose the use of artificial neural networks as a solution to these issues. Using specific examples, we discuss network training using enhanced-sampling methods and the use of the networks in the calculation of ensemble averages. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.119.150601 |