Spatial representation in the hippocampal formation: a history

Moser, Moser and McNaughton provide a historical overview describing how ideas about integration of self-motion cues have shaped our understanding of spatial representation in hippocampal–entorhinal systems, from the discovery of place cells in the 1970s to contemporary studies of spatial coding in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature neuroscience 2017-11, Vol.20 (11), p.1448-1464
Hauptverfasser: Moser, Edvard I, Moser, May-Britt, McNaughton, Bruce L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Moser, Moser and McNaughton provide a historical overview describing how ideas about integration of self-motion cues have shaped our understanding of spatial representation in hippocampal–entorhinal systems, from the discovery of place cells in the 1970s to contemporary studies of spatial coding in intermingled and interacting cell types within complex circuits. Since the first place cell was recorded and the cognitive-map theory was subsequently formulated, investigation of spatial representation in the hippocampal formation has evolved in stages. Early studies sought to verify the spatial nature of place cell activity and determine its sensory origin. A new epoch started with the discovery of head direction cells and the realization of the importance of angular and linear movement-integration in generating spatial maps. A third epoch began when investigators turned their attention to the entorhinal cortex, which led to the discovery of grid cells and border cells. This review will show how ideas about integration of self-motion cues have shaped our understanding of spatial representation in hippocampal–entorhinal systems from the 1970s until today. It is now possible to investigate how specialized cell types of these systems work together, and spatial mapping may become one of the first cognitive functions to be understood in mechanistic detail.
ISSN:1097-6256
1546-1726
DOI:10.1038/nn.4653