B genome specific polymorphism in the TdDRF1 gene is in relationship with grain yield
Drought tolerance is one of the main components of yield potential and stability, and its improvement is a major challenge to breeders. Transcription factors are considered among the best candidate genes for developing functional markers, since they are components of the signal transduction pathways...
Gespeichert in:
Veröffentlicht in: | Planta 2018-02, Vol.247 (2), p.459-469 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Drought tolerance is one of the main components of yield potential and stability, and its improvement is a major challenge to breeders. Transcription factors are considered among the best candidate genes for developing functional markers, since they are components of the signal transduction pathways that coordinate the expression of several downstream genes. Polymorphisms of the Triticum durum dehydration responsive factor 1 (TdDRF1) gene that belongs to DREB2 transcription factor family were identified and specifically assigned to the A or B genome. A panel of primers was derived to selectively isolate the corresponding gene copies. These molecular information were also used to develop a new molecular marker: an allele-specific PCR assay discriminating two genotypes (Mohawk and Cocorit) was developed and used for screening a durum wheat recombinant inbred line population (RIL-pop) derived from the above genotypes. Phenotypic data from the RIL-pop grown during two seasons, under different environmental conditions, adopting an α-lattice design with two repetitions, were collected, analyzed and correlated with molecular data from the PCR assay. A significant association between a specific polymorphism in the B genome copy of the TdDRF1 gene and the grain yield in drought conditions were observed. |
---|---|
ISSN: | 0032-0935 1432-2048 |
DOI: | 10.1007/s00425-017-2799-0 |