Nε-Fatty acylation of Rho GTPases by a MARTX toxin effector

The multifunctional autoprocessing repeats-in-toxin (MARTX) toxins are a family of large toxins that are extensively distributed in bacterial pathogens. MARTX toxins are autocatalytically cleaved to multiple effector domains, which are released into host cells to modulate the host signaling pathways...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2017-10, Vol.358 (6362), p.528-531
Hauptverfasser: Zhou, Yan, Huang, Chunfeng, Yin, Li, Wan, Muyang, Wang, Xiaofei, Li, Lin, Liu, Yanhua, Wang, Zhao, Fu, Panhan, Zhang, Ni, Chen, She, Liu, Xiaoyun, Shao, Feng, Zhu, Yongqun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The multifunctional autoprocessing repeats-in-toxin (MARTX) toxins are a family of large toxins that are extensively distributed in bacterial pathogens. MARTX toxins are autocatalytically cleaved to multiple effector domains, which are released into host cells to modulate the host signaling pathways. The Rho guanosine triphosphatase (GTPase) inactivation domain (RID), a conserved effector domain of MARTX toxins, is implicated in cell rounding by disrupting the host actin cytoskeleton. We found that the RID is an Nε-fatty acyltransferase that covalently modifies the lysine residues in the C-terminal polybasic region of Rho GTPases. The resulting fatty acylation inhibited Rho GTPases and disrupted Rho GTPase–mediated signaling in the host. Thus, RID can mediate the lysine Nε-fatty acylation of mammalian proteins and represents a family of toxins that harbor N-fatty acyltransferase activities in bacterial pathogens.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.aam8659