Intrinsically Disordered Proteome of Human Membrane‐Less Organelles
It is recognized now that various proteinaceous membrane‐less organelles (PMLOs) are commonly found in cytoplasm, nucleus, and mitochondria of various eukaryotic cells (as well as in the chloroplasts of plant cells). Being different from the “traditional” membrane‐encapsulated organelles, such as ch...
Gespeichert in:
Veröffentlicht in: | Proteomics (Weinheim) 2018-03, Vol.18 (5-6), p.e1700193-n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is recognized now that various proteinaceous membrane‐less organelles (PMLOs) are commonly found in cytoplasm, nucleus, and mitochondria of various eukaryotic cells (as well as in the chloroplasts of plant cells). Being different from the “traditional” membrane‐encapsulated organelles, such as chloroplasts, endoplasmic reticulum, Golgi apparatus, lysosomes, mitochondria, nucleus, and vacuoles, PMLOs solve the cellular need to facilitate and regulate molecular interactions via reversible and controllable isolation of target molecules in specialized compartments. PMLOs possess liquid‐like behavior and are believed to be formed as a result of biological liquid‐liquid phase transitions (LLPTs, also known as liquid‐liquid phase separation), where an intricate interplay between RNA and intrinsically disordered proteins (IDPs) or hybrid proteins containing ordered domains and intrinsically disordered protein regions (IDPRs) may play an important role. This review analyzes the prevalence of intrinsic disorder in proteins associated with various PMLOs found in human cells and considers some of the functional roles of IDPs/IDPRs in biogenesis of these organelles. |
---|---|
ISSN: | 1615-9853 1615-9861 |
DOI: | 10.1002/pmic.201700193 |