Adsorption characteristics of charged and nonionic small molecules to colloidal alumina

[Display omitted] Dense fluorescent pigments used for inkjet printing of UV and IR-readable non-photobleaching security features require stabilizers to prevent aggregation/sedimentation and inkjet head clogging at high resolution. A study of small molecule adsorption to α-alumina, a model system for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2018-02, Vol.512, p.29-38
Hauptverfasser: Pansare, Vikram J., Hwang, Victoria, Figueroa, Carlos, Prud'homme, Robert K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] Dense fluorescent pigments used for inkjet printing of UV and IR-readable non-photobleaching security features require stabilizers to prevent aggregation/sedimentation and inkjet head clogging at high resolution. A study of small molecule adsorption to α-alumina, a model system for security pigments, is presented. Alumina is dispersed by two methods yielding different zeta potentials but identical isoelectric points. Essentially complete dispersion is obtained in water at pH 3 but aggregation occurs at pH 6 where the surface charging is lower. Adsorption studies focus on the naphthyl-phosphate, -sulfate, and hydroxyl (triethylene glycol) groups. Phosphate adsorption was strongest with a 1.2 molecules/nm2 plateau, close to the titratable exchange capacity of 1.3 OH groups/nm2 on the alumina surface with ΔHadsorption=−7.58±1.63kJ/mol determined by calorimetry. Sulfate adsorption was weaker with a more linear adsorption isotherm. The adsorption/exchange process yields a rise in pH that is correlated with the binding strength. Hydroxyl binding is weakest, being driven by hydrogen bonding, and showed no rise in pH during adsorption. A polyphosphate-poly(ethylene glycol) block copolymer is expected to be advantageous for the dispersion of such inkjet colloids.
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2017.10.019