Effect of Water Addition during Preparation on the Early-Time Photodynamics of CH3 NH3 PbI3 Perovskite Layers

The effect of water addition during preparation of a CH3 NH3 PbI3 layer on the photodynamics is studied by femtosecond transient absorption. Both the regular perovskite and the aqueous analogue show charge thermalisation on a timescale of about 500 fs. This process is, however, less pronounced in th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemphyschem 2017-12, Vol.18 (23), p.3320-3324
Hauptverfasser: Aphrham, S, Pan, Q, Zaccarine, S F, Felter, K M, Thieme, J, van den Nieuwenhuijzen, K J H, Ten Elshof, J E, Huijser, A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effect of water addition during preparation of a CH3 NH3 PbI3 layer on the photodynamics is studied by femtosecond transient absorption. Both the regular perovskite and the aqueous analogue show charge thermalisation on a timescale of about 500 fs. This process is, however, less pronounced in the latter layer. The spectral feature associated with hot charges does not fully decay on this timescale, but also shows a long-lived (sub-ns) component. As water molecules may interfere with the hydrogen bonding between the CH3 NH3+ cations and the inorganic cage, this effect is possibly caused by immobilisation of cation motion, suggesting a key role of CH3 NH3+ dipole reorientation in charge thermalisation. This effect shows the possibility of controlling hot charge carrier cooling to overcome the Shockley-Queisser limit.
ISSN:1439-7641
DOI:10.1002/cphc.201700896