Mcl-1 Down-regulation Potentiates ABT-737 Lethality by Cooperatively Inducing Bak Activation and Bax Translocation

The Bcl-2 antagonist ABT-737 targets Bcl-2/Bcl-xL but not Mcl-1, which may confer resistance to this novel agent. Here, we show that Mcl-1 down-regulation by the cyclin-dependent kinase (CDK) inhibitor roscovitine or Mcl-1-shRNA dramatically increases ABT-737 lethality in human leukemia cells. ABT-7...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer research (Chicago, Ill.) Ill.), 2007-01, Vol.67 (2), p.782-791
Hauptverfasser: SHUANG CHEN, YUN DAI, HARADA, Hisashi, DENT, Paul, GRANT, Steven
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Bcl-2 antagonist ABT-737 targets Bcl-2/Bcl-xL but not Mcl-1, which may confer resistance to this novel agent. Here, we show that Mcl-1 down-regulation by the cyclin-dependent kinase (CDK) inhibitor roscovitine or Mcl-1-shRNA dramatically increases ABT-737 lethality in human leukemia cells. ABT-737 induces Bax conformational change but fails to activate Bak or trigger Bax translocation. Coadministration of roscovitine and ABT-737 untethers Bak from Mcl-1 and Bcl-xL, respectively, triggering Bak activation and Bax translocation. Studies employing Bax and/or Bak knockout mouse embryonic fibroblasts (MEFs) confirm that Bax is required for ABT-737+/-roscovitine lethality, whereas Bak is primarily involved in potentiation of ABT-737-induced apoptosis by Mcl-1 down-regulation. Ectopic Mcl-1 expression attenuates Bak activation and apoptosis by ABT-737+roscovitine, whereas cells overexpressing Bcl-2 or Bcl-xL remain fully sensitive. Finally, Mcl-1 knockout MEFs are extremely sensitive to Bak conformational change and apoptosis induced by ABT-737, effects that are not potentiated by roscovitine. Collectively, these findings suggest down-regulation of Mcl-1 by either CDK inhibitors or genetic approaches dramatically potentiate ABT-737 lethality through cooperative interactions at two distinct levels: unleashing of Bak from both Bcl-xL and Mcl-1 and simultaneous induction of Bak activation and Bax translocation. These findings provide a mechanistic basis for simultaneously targeting Mcl-1 and Bcl-2/Bcl-xL in leukemia.
ISSN:0008-5472
1538-7445
DOI:10.1158/0008-5472.can-06-3964