Resistance to Ara-C Up-Regulates the Activation of NF-κB, Telomerase Activity and Fas Expression in NALM-6 Cells
Cytosine arabinoside (1-β-D-arabinofuranosylcytosine; Ara-C) is the most important antimetabolite used to induce remission in acute leukemia, but cellular resistance to Ara-C reflects a poor prognosis in cancer chemotherapy. To further investigate the mechanisms of resistance to Ara-C, we have estab...
Gespeichert in:
Veröffentlicht in: | Biological & pharmaceutical bulletin 2007/11/01, Vol.30(11), pp.2069-2074 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cytosine arabinoside (1-β-D-arabinofuranosylcytosine; Ara-C) is the most important antimetabolite used to induce remission in acute leukemia, but cellular resistance to Ara-C reflects a poor prognosis in cancer chemotherapy. To further investigate the mechanisms of resistance to Ara-C, we have established Ara-C-resistant NALM-6 cells. The activation of nuclear factor κB (NF-κB) was accompanied by the acquisition of Ara-C resistance. Telomerase activity has also increased with the acquisition of Ara-C resistance. The expression of Bid, Bax, or p53 proteins have been shown to increase correlated with the acquisition of Ara-C resistance. In contrast to the increase in these proteins, Bcl-2, Bcl-x, and Bag-1 proteins remained unchanged with the acquisition of Ara-C resistance. Fas expression increased with the acquisition of Ara-C resistance in the late stage. The induction of apoptosis and reduction of cell viability by cytotoxic anti-Fas antibody was more susceptible in resistant cells than parental cells. In conclusion, this report has shown that resistance to Ara-C up-regulates the activation of NF-κB, telomerase activity and Fas expression. |
---|---|
ISSN: | 0918-6158 1347-5215 |
DOI: | 10.1248/bpb.30.2069 |