Wide-field fluorescence tomography with composited epi-illumination of multi-frequency sinusoidal patterns

We present a spatial-frequency domain (SFD) fluorescence tomography (FT) for acquiring three-dimensional fluorophore distribution in turbid media. The approach uses a composited epi-illumination of multi-frequency sinusoidal patterns on a sample of semi-infinite geometry and demodulates the measured...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied optics (2004) 2017-10, Vol.56 (29), p.8283-8290
Hauptverfasser: Li, Tongxin, Qin, Zhuanping, Chen, Weiting, Zhao, Huijuan, Yan, Panpan, Zhao, Kuanxin, Gao, Feng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a spatial-frequency domain (SFD) fluorescence tomography (FT) for acquiring three-dimensional fluorophore distribution in turbid media. The approach uses a composited epi-illumination of multi-frequency sinusoidal patterns on a sample of semi-infinite geometry and demodulates the measured data with a generalized phase shifting scheme to calculate the modulation transfer function (MTF) at each frequency. This method results in a significantly reduced number of the optical field measurements, as compared to those with separate illumination of single-frequency sinusoidal patterns, and, thereby, achieves a fast data acquisition that is desired for a dynamic imaging application. Fluorescence yield images are recovered with the normalized Born formulated inversion of the diffusion model by simultaneously using the multi-frequency MTFs. Simulative and experimental reconstructions are performed in comparison with the single-frequency scheme to validate the proposed algorithm. The results suggest that adoption of the multi-frequency strategy to the SFD-FT can substantially improve the reconstruction quality, as well as its imaging resolution and quantitative accuracy.
ISSN:1559-128X
2155-3165
1539-4522
DOI:10.1364/AO.56.008283