Convolutional neural network-based data page classification for holographic memory

We propose a deep-learning-based classification of data pages used in holographic memory. We numerically investigated the classification performance of a conventional multilayer perceptron (MLP) and a deep neural network, under the condition that reconstructed page data are contaminated by some nois...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied optics (2004) 2017-09, Vol.56 (26), p.7327-7330
Hauptverfasser: Shimobaba, Tomoyoshi, Kuwata, Naoki, Homma, Mizuha, Takahashi, Takayuki, Nagahama, Yuki, Sano, Marie, Hasegawa, Satoki, Hirayama, Ryuji, Kakue, Takashi, Shiraki, Atsushi, Takada, Naoki, Ito, Tomoyoshi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a deep-learning-based classification of data pages used in holographic memory. We numerically investigated the classification performance of a conventional multilayer perceptron (MLP) and a deep neural network, under the condition that reconstructed page data are contaminated by some noise and are randomly laterally shifted. When data pages are randomly laterally shifted, the MLP was found to have a classification accuracy of 93.02%, whereas the deep neural network was able to classify data pages at an accuracy of 99.98%. The accuracy of the deep neural network is 2 orders of magnitude better than the MLP.
ISSN:1559-128X
2155-3165
1539-4522
DOI:10.1364/ao.56.007327