Highly Flexible and Sensitive Wearable E‑Skin Based on Graphite Nanoplatelet and Polyurethane Nanocomposite Films in Mass Industry Production Available
Graphene and nanomaterials based flexible pressure sensors R&D activities are becoming hot topics due to the huge marketing demand on wearable devices and electronic skin (E-Skin) to monitor the human body’s actions for dedicated healthcare. Herein, we report a facile and efficient fabrication s...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2017-11, Vol.9 (44), p.38745-38754 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Graphene and nanomaterials based flexible pressure sensors R&D activities are becoming hot topics due to the huge marketing demand on wearable devices and electronic skin (E-Skin) to monitor the human body’s actions for dedicated healthcare. Herein, we report a facile and efficient fabrication strategy to construct a new type of highly flexible and sensitive wearable E-Skin based on graphite nanoplates (GNP) and polyurethane (PU) nanocomposite films. The developed GNP/PU E-Skin sensors are highly flexible with good electrical conductivity due to their unique binary microstructures with synergistic interfacial characteristics, which are sensitive to both static and dynamic pressure variation, and can even accurately and quickly detect the pressure as low as 0.005 N/50 Pa and momentum as low as 1.9 mN·s with a gauge factor of 0.9 at the strain variation of up to 30%. Importantly, our GNP/PU E-Skin is also highly sensitive to finger bending and stretching with a linear correlation between the relative resistance change and the corresponding bending angles or elongation percentage. In addition, our E-Skin shows excellent sensitivity to voice vibration when exposed to a volunteer’s voice vibration testing. Notably, the entire E-Skin fabrication process is scalable, low cost, and industrially available. Our complementary experiments with comprehensive results demonstrate that the developed GNP/PU E-Skin is impressively promising for practical healthcare applications in wearable devices, and enables us to monitor the real-world force signals in real-time and in-situ mode from pressing, hitting, bending, stretching, and voice vibration. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.7b10316 |