Ulk4 deficiency leads to hypomyelination in mice
Brain nerve fibers are insulated by myelin which is produced by oligodendrocytes. Defects in myelination are increasingly recognized as a common pathology underlying neuropsychiatric and neurodevelopmental disorders, which are associated with deletions of the Unc‐51‐like kinase 4 (ULK4) gene. Key tr...
Gespeichert in:
Veröffentlicht in: | Glia 2018-01, Vol.66 (1), p.175-190 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Brain nerve fibers are insulated by myelin which is produced by oligodendrocytes. Defects in myelination are increasingly recognized as a common pathology underlying neuropsychiatric and neurodevelopmental disorders, which are associated with deletions of the Unc‐51‐like kinase 4 (ULK4) gene. Key transcription factors have been identified for oligodendrogenesis, but little is known about their associated regulators. Here we report that Ulk4 acts as a key regulator of myelination. Myelination is reduced by half in the Ulk4tm1a/tm1a hypomorph brain, whereas expression of axonal marker genes Tubb3, Nefh, Nefl and Nefm remains unaltered. Transcriptome analyses reveal that 8 (Gfap, Mbp, Mobp, Plp1, Slc1a2, Ttr, Cnp, Scd2) of the 10 most significantly altered genes in the Ulk4tm1a/tm1a brain are myelination‐related. Ulk4 is co‐expressed in Olig2+ (pan‐oligodendrocyte marker) and CC1+ (mature myelinated oligodendrocyte marker) cells during postnatal development. Major oligodendrogeneic transcription factors, including Olig2, Olig1, Myrf, Sox10, Sox8, Sox6, Sox17, Nkx2‐2, Nkx6‐2 and Carhsp1, are significantly downregulated in the mutants. mRNA transcripts enriched in oligodendrocyte progenitor cells (OPCs), the newly formed oligodendrocytes (NFOs) and myelinating oligodendrocytes (MOs), are significantly attenuated. Expression of stage‐specific oligodendrocyte factors including Cspg4, Sox17, Nfasc, Enpp6, Sirt2, Cnp, Plp1, Mbp, Ugt8, Mag and Mog are markedly decreased. Indirect effects of axon caliber and neuroinflammation may also contribute to the hypomyelination, as Ulk4 mutants display smaller axons and increased neuroinflammation. This is the first evidence demonstrating that ULK4 is a crucial regulator of myelination, and ULK4 may therefore become a novel therapeutic target for hypomyelination diseases.
Main Points
A Ser/Thr Kinase Ulk4 regulates myelination, which is reduced by half in Ulk4 mutant.
Myelin transcriptome is the most significant pathway altered in the mutant genome.
ULK4 may become a novel therapeutic target for hypomyelination diseases. |
---|---|
ISSN: | 0894-1491 1098-1136 |
DOI: | 10.1002/glia.23236 |