Topographical Manipulation of Microparticles and Cells with Acoustic Microstreaming
Precise and reproducible manipulation of synthetic and biological microscale objects in complex environments is essential for many practical biochip and microfluidic applications. Here, we present an attractive acoustic topographical manipulation (ATM) method to achieve efficient and reproducible ma...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2017-11, Vol.9 (44), p.38870-38876 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Precise and reproducible manipulation of synthetic and biological microscale objects in complex environments is essential for many practical biochip and microfluidic applications. Here, we present an attractive acoustic topographical manipulation (ATM) method to achieve efficient and reproducible manipulation of diverse microscale objects. This new guidance method relies on the acoustically induced localized microstreaming forces generated around microstructures, which are capable of trapping nearby microobjects and manipulating them along a determined trajectory based on local topographic features. This unique phenomenon is investigated by numerical simulations examining the local microstreaming in the presence of microscale boundaries under the standing acoustic wave. This method can be used to manipulate a single microobject around a complex structure as well as collectively manipulate multiple objects moving synchronously along complicated shapes. Furthermore, the ATM can serve for automated maze solving by autonomously manipulating microparticles with diverse geometries and densities, including live cells, through complex maze-like topographical features without external feedback, particle modification, or adjustment of operational parameters. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.7b15237 |