Ingestion of Microplastics by Freshwater Tubifex Worms
Microplastic contamination of the aquatic environment is a global issue. Microplastics can be ingested by organisms leading to negative physiological impacts. The ingestion of microplastics by freshwater invertebrates has not been reported outside the laboratory. Here we demonstrate the ingestion of...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2017-11, Vol.51 (21), p.12844-12851 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Microplastic contamination of the aquatic environment is a global issue. Microplastics can be ingested by organisms leading to negative physiological impacts. The ingestion of microplastics by freshwater invertebrates has not been reported outside the laboratory. Here we demonstrate the ingestion of microplastic particles by Tubifex tubifex from bottom sediments in a major urban waterbody fed by the River Irwell, Manchester, UK. The host sediments had microplastic concentrations ranging from 56 to 2543 particles kg–1. 87% of the Tubifex-ingested microplastic particles were microfibers (55–4100 μm in length), while the remaining 13% were microplastic fragments (50–4500 μm in length). FT-IR analysis revealed ingestion of a range of polymers, including polyester and acrylic fibers. While microbeads were present in the host sediment matrix, they were not detected in Tubifex worm tissue. The mean concentration of ingested microplastics was 129 ± 65.4 particles g–1 tissue. We also show that Tubifex worms retain microplastics for longer than they retain other particulate components of the ingested sediment matrix. Microplastic ingestion by Tubifex worms poses a significant risk for trophic transfer and biomagnification of microplastics up the aquatic food chain. |
---|---|
ISSN: | 0013-936X 1520-5851 |
DOI: | 10.1021/acs.est.7b03567 |