Redox-mediated regulation of connexin proteins; focus on nitric oxide

Connexins are membrane proteins that form hemichannels and gap junction channels at the plasma membrane. Through these channels connexins participate in autocrine and paracrine intercellular communication. Connexin-based channels are tightly regulated by membrane potential, phosphorylation, pH, redo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochimica et biophysica acta. Biomembranes 2018-01, Vol.1860 (1), p.91-95
Hauptverfasser: García, Isaac E., Sánchez, Helmuth A., Martínez, Agustín D., Retamal, Mauricio A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Connexins are membrane proteins that form hemichannels and gap junction channels at the plasma membrane. Through these channels connexins participate in autocrine and paracrine intercellular communication. Connexin-based channels are tightly regulated by membrane potential, phosphorylation, pH, redox potential, and divalent cations, among others, and the imbalance of this regulation have been linked to many acquired and genetic diseases. Concerning the redox potential regulation, the nitric oxide (NO) has been described as a modulator of the hemichannels and gap junction channels properties. However, how NO regulates these channels is not well understood. In this mini-review, we summarize the current knowledge about the effects of redox potential focused in NO on the trafficking, formation and functional properties of hemichannels and gap junction channels. [Display omitted]
ISSN:0005-2736
1879-2642
DOI:10.1016/j.bbamem.2017.10.006