Smart Antibacterial Surfaces with Switchable Bacteria-Killing and Bacteria-Releasing Capabilities
The attachment and subsequent colonization of bacteria on the surfaces of synthetic materials and devices lead to serious problems in both human healthcare and industrial applications. Therefore, antibacterial surfaces that can prevent bacterial attachment and biofilm formation have been a long-stan...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2017-11, Vol.9 (43), p.37511-37523 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The attachment and subsequent colonization of bacteria on the surfaces of synthetic materials and devices lead to serious problems in both human healthcare and industrial applications. Therefore, antibacterial surfaces that can prevent bacterial attachment and biofilm formation have been a long-standing focus of considerable interest and research efforts. Recently, a promising “kill–release” strategy has been proposed and applied to construct so-called smart antibacterial surfaces, which can kill bacteria attached to their surface and then undergo on-demand release of the dead bacteria and other debris to reveal a clean surface under an appropriate stimulus, thereby maintaining effective long-term antibacterial activity. This Review focuses on the recent progress (particularly over the past 5 years) on such smart antibacterial surfaces. According to the different design strategies, these surfaces can be divided into three categories: (i) “K + R”-type surfaces, which have both a killing unit and a releasing unit; (ii) “K → R”-type surfaces, which have a surface-immobilized killing unit that can be switched to perform a releasing function; and (iii) “K + (R)”-type surfaces, which have only a killing unit but can release dead bacteria upon the addition of a release solution. In the end, a brief perspective on future research directions and the major challenges in this promising field is also presented. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.7b13565 |