New Insights into the Evolution of the W Chromosome in Lepidoptera
Moths and butterflies (Lepidoptera) represent the most diverse group of animals with heterogametic females. Although the vast majority of species has a WZ/ZZ (female/male) sex chromosome system, it is generally accepted that the ancestral system was Z/ZZ and the W chromosome has evolved in a common...
Gespeichert in:
Veröffentlicht in: | The Journal of heredity 2017-10, Vol.108 (7), p.709-719 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Moths and butterflies (Lepidoptera) represent the most diverse group of animals with heterogametic females. Although the vast majority of species has a WZ/ZZ (female/male) sex chromosome system, it is generally accepted that the ancestral system was Z/ZZ and the W chromosome has evolved in a common ancestor of Tischeriidae and Ditrysia. However, the lack of data on sex chromosomes in lower Lepidoptera has prevented a formal test of this hypothesis. Here, we performed a detailed analysis of sex chromosomes in Tischeria ekebladella (Tischeriidae) and 3 species representing lower Ditrysia, Cameraria ohridella (Gracillariidae), Plutella xylostella (Plutellidae), and Tineola bisselliella (Tineidae). Using comparative genomic hybridization we show that the first 3 species have well-differentiated W chromosomes, which vary considerably in their molecular composition, whereas T. bisselliella has no W chromosome. Furthermore, our results suggest the presence of neo-sex chromosomes in C. ohridella. For Z chromosomes, we selected 5 genes evenly distributed along the Z chromosome in ditrysian model species and tested their Z-linkage using qPCR. The tested genes (Henna, laminin A, Paramyosin, Tyrosine hydroxylase, and 6-Phosphogluconate dehydrogenase) proved to be Z-linked in all species examined. The conserved synteny of the Z chromosome across Tischeriidae and Ditrysia, along with the W chromosome absence in the lower ditrysian families Psychidae and Tineidae, suggests a possible independent origin of the W chromosomes in these 2 lineages. |
---|---|
ISSN: | 0022-1503 1465-7333 |
DOI: | 10.1093/jhered/esx063 |