Plasmonic MoO2 Nanospheres as a Highly Sensitive and Stable Non-Noble Metal Substrate for Multicomponent Surface-Enhanced Raman Analysis

Semiconductor-based surface-enhanced Raman spectroscopy is getting more and more attention because of its great price advantage. One of the biggest obstacles to the large-scale application of it is the poor stability. Here, we report that plasmonic MoO2 nanospheres can be used as a highly sensitive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2017-11, Vol.89 (21), p.11765-11771
Hauptverfasser: Zhang, Qiqi, Li, Xinshi, Yi, Wencai, Li, Wentao, Bai, Hua, Liu, Jingyao, Xi, Guangcheng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Semiconductor-based surface-enhanced Raman spectroscopy is getting more and more attention because of its great price advantage. One of the biggest obstacles to the large-scale application of it is the poor stability. Here, we report that plasmonic MoO2 nanospheres can be used as a highly sensitive and stable semiconducting-substrate material for surface-enhanced Raman scattering (SERS). By using the MoO2 nanospheres as Raman substrates, a series of typical compounds with high attention can be accurately detected. This new non-noble metal substrate material shows a very high detection limit of 10–8 M, and exhibits great near-field enhancement with one of the highest enhancement factor of 4.8 × 106 reported to date. More importantly, the oxide with intermediate valence displays unexpected ultrahigh stability, which can withstand the corrosion of strong acid and strong alkali as well as 150 °C high temperature oxidation in air. Moreover, the accurate detection of multicomponent samples was also successful on this substrate. These results show that some simple metal oxides with intermediate valence may become sensitive and stable SERS substrate materials due to their abundant free electrons and structure that easily causes hot spots.
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.7b03385