Thermodynamic Stability Trend of Cubic Perovskites

Stability is of central importance in current perovskite solar cell research and applications. Goldschmidt tolerance factor (t) recently provided qualitative guidance for experimentalists to engineer stable ABX3 perovskite by tuning effective ionic size with mixing cations or anions and for theorist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2017-10, Vol.139 (42), p.14905-14908
Hauptverfasser: Sun, Qingde, Yin, Wan-Jian
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Stability is of central importance in current perovskite solar cell research and applications. Goldschmidt tolerance factor (t) recently provided qualitative guidance for experimentalists to engineer stable ABX3 perovskite by tuning effective ionic size with mixing cations or anions and for theorists to search emerging perovskites. Through first-principles calculations, we have calculated decomposition energies of 138 perovskite compounds of potential solar cell applications. Instead of t, we have found that (μ + t)η, where μ and η are the octahedral factor and the atomic packing fraction, respectively, demonstrates a remarkably linear correlation with thermodynamic stability. As a stability descriptor, (μ + t)η is able to predict the relative stability among any two perovskites with an accuracy of ∼90%. This trend is then used to predict decomposition energies of another 69 perovskites, and the results are in excellent agreement with first-principles calculations, indicating the generalization of the trend. This thermodynamic stability trend may help the efficient high-throughput search for emerging stable perovskites and precise control of chemical compositions for stabilizing current perovskites.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.7b09379