Environmental stress and lesion-bypass DNA polymerases
In nature, microbes live under a variety of harsh conditions, such as excess DNA damage, starvation, pH shift, or high temperatures. Microbial cells respond to such stressful conditions mostly by switching global patterns of gene expression to relieve the environmental stress. The SOS response, whic...
Gespeichert in:
Veröffentlicht in: | Annual review of microbiology 2006-01, Vol.60 (1), p.231-253 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In nature, microbes live under a variety of harsh conditions, such as excess DNA damage, starvation, pH shift, or high temperatures. Microbial cells respond to such stressful conditions mostly by switching global patterns of gene expression to relieve the environmental stress. The SOS response, which is induced by DNA damage, is one such global network of gene expression that plays a crucial role in balancing the genomic stability and flexibility that are necessary to adapt to harsh environments. Here, I review the roles of SOS-inducible and noninducible lesion-bypass DNA polymerases in mutagenesis induced by environmental stress, and discuss how these polymerases are coordinated for the replication of damaged chromosomes. Possible contributions of lesion-bypass DNA polymerase in hyperthermophilic archaea, e.g., Sulfolobus solfataricus, to genome maintenance are also discussed. |
---|---|
ISSN: | 0066-4227 1545-3251 |
DOI: | 10.1146/annurev.micro.60.080805.142238 |