Defects in Conidiophore Development and Conidium-Macrophage Interactions in a Dioxygenase Mutant of Aspergillus fumigatus
Oxygenated fatty acids, or oxylipins, play an essential role in physiological signaling and developmental processes in animals, plants, and fungi. Previous characterization of three Aspergillus fumigatus dioxygenases (PpoA, PpoB, and PpoC), similar in sequence to mammalian cyclooxygenases, showed th...
Gespeichert in:
Veröffentlicht in: | Infection and Immunity 2008-07, Vol.76 (7), p.3214-3220 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Oxygenated fatty acids, or oxylipins, play an essential role in physiological signaling and developmental processes in animals, plants, and fungi. Previous characterization of three Aspergillus fumigatus dioxygenases (PpoA, PpoB, and PpoC), similar in sequence to mammalian cyclooxygenases, showed that PpoA is responsible for the production of the oxylipins 8R-hydroperoxyoctadecadienoic acid and 5S,8R-dihydroxy-9Z,12Z-octadecadienoic acid and that PpoC is responsible for 10R-hydroxy-8E,12Z-hydroperoxyoctadecadienoic acid. Here, Δppo mutants were characterized to elucidate the role of fungal dioxygenases in A. fumigatus development and host interactions. The ΔppoC strain displayed distinct phenotypes compared to those of other Δppo mutants and the wild type, including altered conidium size, germination, and tolerance to oxidative stress as well as increased uptake and killing by primary alveolar macrophages. These experiments implicate oxylipins in pathogen development and suggest that ΔppoC represents a useful model for studying the A. fumigatus-host interaction. |
---|---|
ISSN: | 0019-9567 1098-5522 |
DOI: | 10.1128/IAI.00009-08 |