Radio science investigations by VeRa onboard the Venus Express spacecraft

The Venus Express Radio Science Experiment (VeRa) uses radio signals at wavelengths of 3.6 and 13 cm (“X”- and “S”-band, respectively) to investigate the Venus surface, neutral atmosphere, ionosphere, and gravity field, as well as the interplanetary medium. An ultrastable oscillator (USO) provides a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Planetary and space science 2006-11, Vol.54 (13), p.1315-1335
Hauptverfasser: Häusler, B., Pätzold, M., Tyler, G.L., Simpson, R.A., Bird, M.K., Dehant, V., Barriot, J.-P., Eidel, W., Mattei, R., Remus, S., Selle, J., Tellmann, S., Imamura, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Venus Express Radio Science Experiment (VeRa) uses radio signals at wavelengths of 3.6 and 13 cm (“X”- and “S”-band, respectively) to investigate the Venus surface, neutral atmosphere, ionosphere, and gravity field, as well as the interplanetary medium. An ultrastable oscillator (USO) provides a high quality onboard reference frequency source; instrumentation on Earth is used to record amplitude, phase, propagation time, and polarization of the received signals. Simultaneous, coherent measurements at the two wavelengths allow separation of dispersive media effects from classical Doppler shift. VeRa science objectives include the following: (1) Determination of neutral atmospheric structure from the cloud deck (approximately 40 km altitude) to 100 km altitude from vertical profiles of neutral mass density, temperature, and pressure as a function of local time and season. Within the atmospheric structure, search for, and if detected, study of the vertical structure of localized buoyancy waves, and the presence and properties of planetary waves. (2) Study of the H 2SO 4 vapor absorbing layer in the atmosphere by variations in signal intensity and application of this information to tracing atmospheric motions. Scintillation effects caused by radio wave diffraction within the atmosphere can also provide information on small-scale atmospheric turbulence. (3) Investigation of ionospheric structure from approximately 80 km to the ionopause (
ISSN:0032-0633
1873-5088
DOI:10.1016/j.pss.2006.04.032