Altered mitochondrial function, calcium signaling, and catecholamine release in chromaffin cells of diabetic and SHR rats

Comorbidity of diabetes and hypertension is frequent. Here, we have performed a comparative study in three animal models namely, normotensive Wistar Kyoto (WKY) rats, streptozotocin-induced diabetic rats (STZ), and spontaneously hypertensive rats (SHR). With respect WKY rats, we have found the follo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of pharmacology 2017-11, Vol.815, p.416-426
Hauptverfasser: Musial, Diego C., Bomfim, Guilherme H., Arranz-Tagarro, Juan A., Méndez-López, Iago, Miranda-Ferreira, Regiane, Jurkiewicz, Aron, Jurkiewicz, Neide H., García, Antonio G., Padín, Juan F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Comorbidity of diabetes and hypertension is frequent. Here, we have performed a comparative study in three animal models namely, normotensive Wistar Kyoto (WKY) rats, streptozotocin-induced diabetic rats (STZ), and spontaneously hypertensive rats (SHR). With respect WKY rats, we have found the following alterations in adrenal chromaffin cells from STZ and SHR rats: (1) diminished Ca2+ currents; (2) augmented [Ca2+]c elevations and catecholamine release in cells stimulated with angiotensin II or high K+; (3) unchanged expression of angiotensin II receptors AT1 and AT2; (4) higher density of secretory vesicles at subplasmalemmal sites; (5) mitochondria with lower cristae density that were partially depolarized; and (6) lower whole cell ATP content. These alterations may have their origin in (i) an augmented capacity of the endoplasmic reticulum [Ca2+] store likely due to (ii) impaired mitochondrial Ca2+ uptake; (iii) augmented high‐[Ca2+]c microdomains at subplasmalemmal sites secondary to augmented calcium-induce calcium release and to inositol tris-phosphate receptor mediated enhanced Ca2+ mobilization from the endoplasmic reticulum; and (iv) augmented vesicle pool. These alterations seem to be common to the two models of human hypertension here explored, STZ diabetic rats and SHR hypertensive rats.
ISSN:0014-2999
1879-0712
DOI:10.1016/j.ejphar.2017.09.045