The shape of the transmembrane domain is a novel endocytosis signal for single-spanning membrane proteins

Endocytosis is crucial for all cells as it allows them to incorporate material from the extracellular space and control the availability of transmembrane proteins at the plasma membrane. In yeast, endocytosis followed by recycling to the plasma membrane results in a polarised distribution of membran...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cell science 2017-11, Vol.130 (22), p.3829-3838
Hauptverfasser: González Montoro, Ayelén, Bigliani, Gonzalo, Valdez Taubas, Javier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Endocytosis is crucial for all cells as it allows them to incorporate material from the extracellular space and control the availability of transmembrane proteins at the plasma membrane. In yeast, endocytosis followed by recycling to the plasma membrane results in a polarised distribution of membrane proteins by a kinetic mechanism. Here, we report that increasing the volume of residues that constitute the exoplasmic half of the transmembrane domain (TMD) in the yeast SNARE Sso1, a type II membrane protein, results in its polarised distribution at the plasma membrane. Expression of this chimera in strains affected in either endocytosis or recycling revealed that this polarisation is achieved by endocytic cycling. A bioinformatics search of the proteome identified several proteins with high-volume exoplasmic hemi-TMDs. Our experiments indicate that TMDs from these proteins can confer a polarised distribution to the Sso1 cytoplasmic domain, indicating that the shape of the TMD can act as a novel endocytosis and polarity signal in yeast Additionally, a high-volume exoplasmic hemi-TMD can act as an endocytosis signal in a mammalian cell line.
ISSN:0021-9533
1477-9137
DOI:10.1242/jcs.202937