Evaluating physico-chemical influences on cyanobacterial blooms using hyperspectral images in inland water, Korea
Understanding harmful algal blooms is imperative to protect aquatic ecosystems and human health. This study describes the spatial and temporal distributions of cyanobacterial blooms to identify the relations between blooms and environmental factors in the Baekje Reservoir. Two-year cyanobacterial ce...
Gespeichert in:
Veröffentlicht in: | Water research (Oxford) 2017-12, Vol.126, p.319-328 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Understanding harmful algal blooms is imperative to protect aquatic ecosystems and human health. This study describes the spatial and temporal distributions of cyanobacterial blooms to identify the relations between blooms and environmental factors in the Baekje Reservoir. Two-year cyanobacterial cell data at one fixed station and four remotely sensed distributions of phycocyanin (PC) concentrations based on hyperspectral images (HSIs) were used to describe the relation between the spatial and temporal variations in the blooms and the affecting factors. An artificial neural network model and a three-dimensional hydrodynamic model were implemented to estimate the PC concentrations using remotely sensed HSIs and simulate the hydrodynamics, respectively. The statistical test results showed that the variations in the cyanobacterial biomass depended significantly on variations in the water temperature (slope = 0.13, p-value |
---|---|
ISSN: | 0043-1354 1879-2448 |
DOI: | 10.1016/j.watres.2017.09.026 |