The inhibitory effects of biomimetically designed peptides on α-synuclein aggregation
Parkinson's disease is characterized by accumulation of inclusion bodies in dopaminergic neurons, where insoluble and fibrillar α-synuclein makes up the major component of these inclusion bodies. So far, several strategies have been applied in order to suppress α-synuclein aggregation and toxic...
Gespeichert in:
Veröffentlicht in: | Archives of biochemistry and biophysics 2017-11, Vol.634, p.96-106 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Parkinson's disease is characterized by accumulation of inclusion bodies in dopaminergic neurons, where insoluble and fibrillar α-synuclein makes up the major component of these inclusion bodies. So far, several strategies have been applied in order to suppress α-synuclein aggregation and toxicity in Parkinson's disease. In the present study, a new database has been established by segmentation of all the proteins deposited in protein Data Bank. The database data base was searched for the sequences which adopt β structure and are identical or very similar to the regions of α-synuclein which are involved in aggregation. The adjacent β strands of the found sequences were chosen as the peptide inhibitors of α-synuclein aggregation. Two of the predicted peptides, namely KISVRV and GQTYVLPG, were experimentally proved to be efficient in suppressing aggregation of α-synuclein in vitro. Moreover, KISVRV exhibited the ability to disrupt oligomers of α-syn which are assumed to be the pathogenic species in Parkinson's disease. |
---|---|
ISSN: | 0003-9861 1096-0384 |
DOI: | 10.1016/j.abb.2017.09.015 |