Co-Occurrence Analysis for Discovery of Novel Breast Cancer Pathology Patterns
To discover novel patterns in pathology co-occurrence, we have developed algorithms to analyze and visualize pathology co-occurrence. With access to a database of pathology reports, collected under a single protocol and reviewed by a single pathologist, we can conduct an analysis greater in its scop...
Gespeichert in:
Veröffentlicht in: | IEEE journal of biomedical and health informatics 2006-07, Vol.10 (3), p.497-503 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To discover novel patterns in pathology co-occurrence, we have developed algorithms to analyze and visualize pathology co-occurrence. With access to a database of pathology reports, collected under a single protocol and reviewed by a single pathologist, we can conduct an analysis greater in its scope than previous studies looking at breast pathology co-occurrence. Because this data set is unique, specialized methods for pathology co-occurrence analysis and visualization are developed. Primary analysis is through a co-occurrence score based on the Jaccard coefficient. Density maps are used to visualize global co-occurrence. When our co-occurrence analysis is applied to a population stratified by menopausal status, we can successfully identify statistically significant differences in pathology co-occurrence patterns between premenopausal and postmenopausal women. Genomic and proteomic experiments are planned to discover biological mechanisms that may underpin differences seen in pathology patterns between populations |
---|---|
ISSN: | 1089-7771 2168-2194 1558-0032 2168-2208 |
DOI: | 10.1109/TITB.2005.863863 |