An approximate global solution of Einstein’s equations for a rotating finite body

We obtain an approximate global stationary and axisymmetric solution of Einstein’s equations which can be considered as a simple star model: a self-gravitating perfect fluid ball with constant mass density rotating in rigid motion. Using the post-Minkowskian formalism (weak-field approximation) and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:General relativity and gravitation 2007-06, Vol.39 (6), p.707-736
Hauptverfasser: Cabezas, J. A., Martín, J., Molina, A., Ruiz, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We obtain an approximate global stationary and axisymmetric solution of Einstein’s equations which can be considered as a simple star model: a self-gravitating perfect fluid ball with constant mass density rotating in rigid motion. Using the post-Minkowskian formalism (weak-field approximation) and considering rotation as a perturbation (slow-rotation approximation), we find second-order approximate interior and exterior (asymptotically flat) solutions to this problem in harmonic and quo-harmonic coordinates. In both cases, interior and exterior solutions are matched, in the sense of Lichnerowicz, on the surface of zero pressure to obtain a global solution. The resulting metric depends on three arbitrary constants: mass density, rotational velocity and the star radius at the non-rotation limit. The mass, angular momentum, quadrupole moment and other constants of the exterior metric are determined by these three parameters. It is easy to check that Kerr’s metric cannot be the exterior part of that metric.
ISSN:0001-7701
1572-9532
DOI:10.1007/s10714-007-0414-6